scholarly journals The Anomalies and Local Structure of Liquid Water from Many-Body Molecular Dynamics Simulations

Author(s):  
Thomas E. Gartner III ◽  
Kelly M. Hunter ◽  
Eleftherios Lambros ◽  
Alessandro Caruso ◽  
Marc Riera ◽  
...  

For the last 50 years, researchers have sought molecular models that can accurately reproduce water’s microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima at ~223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ~208 K. Furthermore, a local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water’s physical properties across broad ranges of thermodynamic states.

2016 ◽  
Vol 18 (39) ◽  
pp. 27639-27647 ◽  
Author(s):  
H. F. M. C. Martiniano ◽  
N. Galamba

We study, through molecular dynamics simulations, the structure and orientational dynamics of water next to a blocked hydrophobic amino acid, valine (Val), above and below the freezing point of water.


Author(s):  
Marc Riera ◽  
Eleftherios Lambros ◽  
Thuong T. Nguyen ◽  
Andreas W. Goetz ◽  
Francesco Paesani

<div> <div> <div> <p>Despite its apparent simplicity, water displays unique behavior across the phase diagram which is strictly related to the ability of the water molecules to form dense, yet dynamic, hydrogen- bond networks that continually fluctuate in time and space. The competition between different local hydrogen-bonding environments has been hypothesized as a possible origin of the anomalous properties of liquid water. Through a systematic application of the many-body expansion of the total energy, we demonstrate that the local structure of liquid water at room temperature is determined by a delicate balance between two-body and three-body energies, which is further modulated by higher-order many-body effects. Besides providing fundamental insights into the structure of liquid water, this analysis also emphasizes that a correct representation of two-body and three-body energies requires sub-chemical accuracy that is nowadays only achieved by many-body models rigorously derived from the many-body expansion of the total energy, which thus hold great promise for shedding light on the molecular origin of the anomalous behavior of liquid water. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Marc Riera ◽  
Eleftherios Lambros ◽  
Thuong T. Nguyen ◽  
Andreas W. Goetz ◽  
Francesco Paesani

<div> <div> <div> <p>Despite its apparent simplicity, water displays unique behavior across the phase diagram which is strictly related to the ability of the water molecules to form dense, yet dynamic, hydrogen- bond networks that continually fluctuate in time and space. The competition between different local hydrogen-bonding environments has been hypothesized as a possible origin of the anomalous properties of liquid water. Through a systematic application of the many-body expansion of the total energy, we demonstrate that the local structure of liquid water at room temperature is determined by a delicate balance between two-body and three-body energies, which is further modulated by higher-order many-body effects. Besides providing fundamental insights into the structure of liquid water, this analysis also emphasizes that a correct representation of two-body and three-body energies requires sub-chemical accuracy that is nowadays only achieved by many-body models rigorously derived from the many-body expansion of the total energy, which thus hold great promise for shedding light on the molecular origin of the anomalous behavior of liquid water. </p> </div> </div> </div>


2008 ◽  
Vol 354 (47-51) ◽  
pp. 5337-5339 ◽  
Author(s):  
V. Cristiglio ◽  
L. Hennet ◽  
G.J. Cuello ◽  
I. Pozdnyakova ◽  
M.R. Johnson ◽  
...  

2013 ◽  
Vol 423-426 ◽  
pp. 935-938 ◽  
Author(s):  
Ji Feng Li ◽  
Xiao Ping Zhao ◽  
Jian Liu

Molecular dynamics simulations were performed to calculate the melting points of perfect crystalline aluminum to high pressures. Under ambientpressure, there exhibits about 20% superheating before melting compared to the experimental melting point. Under high pressures, thecalculated melting temperature increases with the pressure but at a decreasing rate, which agrees well with the Simon's melting equation. Porosity effect was also studied for aluminum crystals with various initial porosity at ambient pressure, which shows that the equilibrium melting point decreases with the initial porosity as experiments expect.


Sign in / Sign up

Export Citation Format

Share Document