Is Aromaticity a Driving Force in Catalytic Cycles? A Case from the Cycloisomerization of Enynes Catalyzed by All-Metal Aromatic Pd3+ Clusters and Carboxylic Acids

Author(s):  
Franca Bigi ◽  
Gianpiero Cera ◽  
Raimondo Maggi ◽  
Yanlan Wang ◽  
Max Malacria ◽  
...  
Author(s):  
Yahya Mirzaie ◽  
Jalil Lari ◽  
Hooshang Vahedi ◽  
Mohammad Hakimi ◽  
Ahmad Nakhaei ◽  
...  

Various potentials antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using (NH<sub>4</sub>)<sub>42</sub> [Mo<sup>VI</sup><sub>72</sub>Mo<sup>V</sup><sub>60</sub>O<sub>372</sub>(CH<sub>3</sub>COO)<sub>30</sub>(H<sub>2</sub>O)<sub>72</sub>], a Keplerate-type giant-ball nanoporous isopolyoxomolybdate, as a catalyst in refluxing water. The results showed that this catalyst acts as effective catalyst and the reaction proceeded more easily and gave the highest yields of the products in short reaction time under refluxing water. Short reaction times, simple isolation of the products, and usage of eco-friendly catalysts are some features of this procedure. In addition, the catalysts was easily recovered and used in multiple catalytic cycles. This material was prepared according to a previously published literature procedure using inexpensive and readily available starting materials.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


2014 ◽  
Vol 122 (03) ◽  
Author(s):  
C Stache ◽  
A Hölsken ◽  
SM Schlaffer ◽  
A Hess ◽  
M Metzler ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
H Jodeleit ◽  
P Palamides ◽  
O Al-amodi ◽  
G Beikircher ◽  
S Schönthaler ◽  
...  

1977 ◽  
Vol 27 (1) ◽  
pp. 117-120
Author(s):  
Shoji Watanabe ◽  
Tsutomu Fujita ◽  
Kyoichi Suga ◽  
Haruhiko Abe

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Sign in / Sign up

Export Citation Format

Share Document