Rashba Splitting in Two Dimensional Hybrid Perovskite Materials for High Efficient Solar and Heat Energy Harvesting

2020 ◽  
Vol 11 (18) ◽  
pp. 7679-7686
Author(s):  
Hardik L. Kagdada ◽  
Sanjeev K. Gupta ◽  
Satyaprakash Sahoo ◽  
Dheeraj K. Singh
2020 ◽  
Vol 32 (17) ◽  
pp. 7383-7388 ◽  
Author(s):  
Ekaterina I. Marchenko ◽  
Sergey A. Fateev ◽  
Andrey A. Petrov ◽  
Vadim V. Korolev ◽  
Artem Mitrofanov ◽  
...  

2019 ◽  
Author(s):  
Eric Lukosi ◽  
Mahshid Ahmadi ◽  
Travis Smith ◽  
Ryan Tan ◽  
Bogdan Dryzhakov ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3363-3370
Author(s):  
Ang Yang ◽  
Yu Qiu ◽  
Dechao Yang ◽  
Kehong Lin ◽  
Shiying Guo

In this paper, experimental and theoretical studies of the piezoelectric effect of two-dimensional ZnO nanostructures, including straight nanosheets (SNSs) and curved nanosheets (CNSs) are conducted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yin ◽  
Rounak Naphade ◽  
Partha Maity ◽  
Luis Gutiérrez-Arzaluz ◽  
Dhaifallah Almalawi ◽  
...  

AbstractHot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e., the Rashba band splitting effect. Here, we investigated the hot-carrier cooling processes for two slightly different compositions of two-dimensional Dion–Jacobson hybrid perovskites, namely, (3AMP)PbI4 and (4AMP)PbI4 (3AMP = 3-(aminomethyl)piperidinium; 4AMP = 4-(aminomethyl)piperidinium), using a combination of ultrafast transient absorption spectroscopy and first-principles calculations. In (4AMP)PbI4, upon Rashba band splitting, the spin-dependent scattering of hot electrons is responsible for accelerating hot-carrier cooling at longer delays. Importantly, the hot-carrier cooling of (4AMP)PbI4 can be extended by manipulating the spin state of the hot carriers. Our findings suggest a new approach for prolonging hot-carrier cooling in hybrid perovskites, which is conducive to further improving the performance of hot-carrier-based optoelectronic and spintronic devices.


Author(s):  
Peishen Shang ◽  
Chunxiao Zhang ◽  
Mengshi Zhou ◽  
Chaoyu He ◽  
Tao Ouyang ◽  
...  

Searching for photocatalysts is crucial for the production of renewable hydrogen from water. Two-dimensional (2D) vdW heterojunctions show great potential. Using first- principles calculations within the HSE06 functional, we propose...


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Seunghyun Rhee ◽  
Kunsik An ◽  
Kyung-Tae Kang

Organic-inorganic hybrid perovskite materials have attracted tremendous attention as a key material in various optoelectronic devices. Distinctive optoelectronic properties, such as a tunable energy band position, long carrier diffusion lengths, and high charge carrier mobility, have allowed rapid progress in various perovskite-based optoelectronic devices (solar cells, photodetectors, light emitting diodes (LEDs), and lasers). Interestingly, the developments of each field are based on different characteristics of perovskite materials which are suitable for their own applications. In this review, we provide the fundamental properties of perovskite materials and categorize the usages in various optoelectronic applications. In addition, the prerequisite factors for those applications are suggested to understand the recent progress of perovskite-based optoelectronic devices and the challenges that need to be solved for commercialization.


Sign in / Sign up

Export Citation Format

Share Document