Role of Torsional Flexibility in the Film Formation Process in Two π-Conjugated Model Oligomers

2020 ◽  
Vol 11 (21) ◽  
pp. 9379-9386
Author(s):  
Stefan Wedler ◽  
Cheng Zhou ◽  
Guillermo C. Bazan ◽  
Fabian Panzer ◽  
Anna Köhler
Author(s):  
Hendrik Linz ◽  
Henrik Beuther ◽  
Maryvonne Gerin ◽  
Javier R. Goicoechea ◽  
Frank Helmich ◽  
...  

AbstractThe far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.


1986 ◽  
Vol 59 (12) ◽  
pp. 711-718 ◽  
Author(s):  
Kazuyuki TACHI ◽  
Chikaaki OKUDA ◽  
Yoichi OYAMA ◽  
Shouichi SUZUKI

2020 ◽  
Vol 2020 (0) ◽  
pp. 16A12
Author(s):  
Yun LU ◽  
Hiroyuki YOSHIDA ◽  
Liang HAO ◽  
Sujun GUAN ◽  
Satoshi SEKI

2018 ◽  
Vol 90 (3) ◽  
pp. 507-522 ◽  
Author(s):  
Erica I. Parisi ◽  
Nicole Bonelli ◽  
Emiliano Carretti ◽  
Rodorico Giorgi ◽  
Gabriel M. Ingo ◽  
...  

AbstractThis paper presents an innovative poly(vinyl)alcohol-based film forming system, specifically devised for the controllable and selective cleaning of copper-based artifacts. Traditional cleaning procedures are commonly performed using mechanical and/or chemical methods. Unfortunately, both these methods present some limitations related to both the poor selectivity and invasiveness in case of the mechanical procedure, and to the scarce control over the involved reactions when dealing with a chemical approach. The innovative system proposed in this work allows combining the advantages of chemical and mechanical treatments thanks to the confinement of a complexing agent (EDTA) within a fluid, polymeric matrix, that is able to form a solid thin film upon drying. After treatment, the polymeric film can be completely removed from the artwork through a gentle peeling action. In this contribution, the film formation mechanism was investigated by means of thermal analysis and rheology; the role of plasticizers, volatile solvent fraction, and quantity of loaded EDTA is also discussed. Finally, the results of cleaning tests performed on artificially aged samples, and on a real case study, the “Fontana dei Mostri Marini” by Pietro Tacca in Florence, are presented.


Author(s):  
Kazuya Tada ◽  
Daiya Fujimoto

Abstract Electrophoretic deposition provides material-efficient film formation on large area electrodes. In this study, it has been found that there is a significant difference in the colloidal particle formation process between a thiophene-based copolymer poly(3-octylthiophene- 2,5-diyl-co-3-decyloxythiophene-2,5-diyl) (POT-co-DOT) and C60 in preparation of suspension for electrophoretic deposition by reprecipitation method. This difference is attributed to the difference between low molecular weight materials with specific molecular weight and polymers with molecular weight distribution. The composition of POT-co-DOT:C60 composite film by electrophoretic deposition has also been estimated.


Author(s):  
Ryo Ono ◽  
Shinya Imai ◽  
Yuta Kusama ◽  
Takuya Hamada ◽  
Masaya Hamada ◽  
...  

Abstract Sputtering enables uniform and clean deposition over a large area, which is an issue with exfoliation and chemi-cal vapor deposition methods. On the other hand, the process of physical vapor deposition (PVD) film formationhas not yet been clarified. We prepared several samples from the sub-monolayer region, and performed Ra-man spectroscopy, X-ray photon spectroscopy and high-angle annular dark-field scanning transmission electronmicroscopy. From these results, the internal stresses inherent to PVD films, the bonding states specific to sub-monolayers, and the unique film structure and the grain formation process of PVD films were discussed fromthe perspective of sub-monolayers. As a conclusion, we found that it is important to suppress the formation ofsub-monolayers on the substrate to completely form the first layer.


Author(s):  
Thierry Pauporté ◽  
Daming zheng

Nowadays, overcoming the stability issue of perovskite solar cells (PSCs) while keeping high efficiency has become an urgent need for the future of this technology. By using x-ray diffraction (XRD),...


2021 ◽  
Vol 70 (5) ◽  
pp. 150-154
Author(s):  
Kunio Shimura ◽  
Yuki Ota ◽  
Takeo Yanagiguchi ◽  
Hideki Matsuda

Sign in / Sign up

Export Citation Format

Share Document