scholarly journals Bringing high spatial resolution to the far-infrared

Author(s):  
Hendrik Linz ◽  
Henrik Beuther ◽  
Maryvonne Gerin ◽  
Javier R. Goicoechea ◽  
Frank Helmich ◽  
...  

AbstractThe far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.

Author(s):  
E. González-Alfonso ◽  
L. Armus ◽  
F. J. Carrera ◽  
V. Charmandaris ◽  
A. Efstathiou ◽  
...  

AbstractA far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last ~10 Gyr of the Universe (z = 1.5–2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.


Author(s):  
Lidiya Derbenyova

The article explores the role of antropoetonyms in the reader’s “horizon of expectation” formation. As a kind of “text in the text”, antropoetonyms are concentrating a large amount of information on a minor part of the text, reflecting the main theme of the work. As a “text” this class of poetonyms performs a number of functions: transmission and storage of information, generation of new meanings, the function of “cultural memory”, which explains the readers’ “horizon of expectations”. In analyzing the context of the literary work we should consider the function of antropoetonyms in vertical context (the link between artistic and other texts, and the groundwork system of culture), as well as in the context of the horizontal one (times’ connection realized in the communication chain from the word to the text; the author’s intention). In this aspect, the role of antropoetonyms in the structure of the literary text is extremely significant because antropoetonyms convey an associative nature, generating a complex mechanism of allusions. It’s an open fact that they always transmit information about the preceding text and suggest a double decoding. On the one hand, the recipient decodes this information, on the other – accepts this as a sort of hidden, “secret” sense.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
Philippa Adrych ◽  
Robert Bracey ◽  
Dominic Dalglish ◽  
Stefanie Lenk ◽  
Rachel Wood

The Conclusion to this volume returns to the three main questions posed in the Introduction, examining how a shared name, alongside material culture, can affect our understanding of ancient religious practices. The first section explores the benefits of a collaborative and comparative endeavour, drawing out examples from the earlier chapters and showing how they informed our perceptions of what a name can mean. The second and third parts ask more theoretical questions about how we can use our case studies to explore broader problems of interpreting ancient religious practices, and the role of objects within them. Finally, we return to the main theme of the volume: the name Mithra, and the ideas, expectations, and traditions that have been attached to it in antiquity and in modern scholarship. We suggest a new way of approaching the phenomenon of the shared name, and what that can entail for those interested in ancient religion.


1997 ◽  
Vol 159 ◽  
pp. 333-336
Author(s):  
D. Lutz ◽  
R. Genzel ◽  
E. Sturm ◽  
A.F.M. Moorwood ◽  
E. Oliva ◽  
...  

AbstractWe discuss 2.5–45 µm spectra of the Circinus galaxy and of Cen A, obtained with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory. The large number of detected ionic fine structure lines, observable also in visually obscured sources, provides strong constraints on the shape of the ionizing spectrum, which is found to exhibit a UV bump peaking at ~ 70 eV in the case of Circinus. Pure rotational emission of molecular hydrogen, directly probing warm molecular gas, can for the first time be detected in external galaxies.


2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


2021 ◽  
Vol 5 ◽  
pp. 239821282110077
Author(s):  
Joost Haarsma ◽  
Catherine J Harmer ◽  
Sandra Tamm

Ketamine, classical psychedelics and sleep deprivation are associated with rapid effects on depression. Interestingly, these interventions also have common psychotomimetic actions, mirroring aspects of psychosis such as an altered sense of self, perceptual distortions and distorted thinking. This raises the question whether these interventions might be acute antidepressants through the same mechanisms that underlie some of their psychotomimetic effects. That is, perhaps some symptoms of depression can be understood as occupying the opposite end of a spectrum where elements of psychosis can be found on the other side. This review aims at reviewing the evidence underlying a proposed continuum hypothesis of psychotomimetic rapid antidepressants, suggesting that a range of psychotomimetic interventions are also acute antidepressants as well as trying to explain these common features in a hierarchical predictive coding framework, where we hypothesise that these interventions share a common mechanism by increasing the flexibility of prior expectations. Neurobiological mechanisms at play and the role of different neuromodulatory systems affected by these interventions and their role in controlling the precision of prior expectations and new sensory evidence will be reviewed. The proposed hypothesis will also be discussed in relation to other existing theories of antidepressants. We also suggest a number of novel experiments to test the hypothesis and highlight research areas that could provide further insights, in the hope to better understand the acute antidepressant properties of these interventions.


2007 ◽  
Vol 59 (sp2) ◽  
pp. S429-S435 ◽  
Author(s):  
Woong-Seob Jeong ◽  
Takao Nakagawa ◽  
Issei Yamamura ◽  
Chris P. Pearson ◽  
Richard S. Savage ◽  
...  

1999 ◽  
Vol 607 ◽  
Author(s):  
A. Saher Helmy ◽  
A.C. Bryce ◽  
C.N. Ironside ◽  
J.S. Aitchison ◽  
J.H. Marsh ◽  
...  

AbstractIn this paper we shall discuss techniques for accurate, non-destructive, optical characterisation of structures fabricated using quantum well intermixing (QWI). Spatially resolved photoluminescence and Raman spectroscopy were used to characterise the lateral bandgap profiles produced by impurity free vacancy disordering (IFVD) technology. Different features were used to examine the spatial resolution of the intermixing process. Features include 1:1 gratings as well as isolated stripes. From the measurements, the spatial selectivity of IFVD could be identified, and was found to be ∼4.5 μm, in contrast with the spatial resolution of the process of sputtering induced intermixing, which was found to be ∼2.5 μm. In addition, PL measurements on 1:1 gratings fabricated using IFVD show almost complete suppression of intermixing dielectric cap gratings with periods less than 10 microns. Finally, some insight into the limitations and merits of PL and Raman for the precision characterisation of QWI will be presented.


Sign in / Sign up

Export Citation Format

Share Document