Bimetallic Phosphides for Hybrid Supercapacitors

Author(s):  
SK Tarik Aziz ◽  
Sushil Kumar ◽  
Sk Riyajuddin ◽  
Kaushik Ghosh ◽  
Gilbert Daniel Nessim ◽  
...  
2019 ◽  
Author(s):  
Yamin Zhang ◽  
Lina Chen ◽  
Chongyang Hao ◽  
Xiaowen Zheng ◽  
Yixuan Guo ◽  
...  

For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors, potassium ions are pre-inserted into MnO<sub>2</sub> tunnel structure, the as-prepared K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16</sub> materials consist of <a>nanoparticles</a> and nanorods were prepared by facile high-temperature solid-state reaction. <a></a>The as-prepared materials were well studied andthey show outstanding electrochemical behavior. We assembled hybrid supercapacitors with commercial activated carbon (YEC-8A) as anode and K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16 </sub>as cathode. It has high energy densities and power densities. Li-ion capacitors reach a high energy density of 127.61 Wh kg<sup>-1 </sup>at the power density of 99.86 W kg<sup>-1</sup> and Na-ion capacitor obtains 170.96 Wh kg<sup>-1 </sup>at 133.79 W kg<sup>-1</sup>. In addition, the <a>hybrid supercapacitor</a>s demonstrate excellent cycling performance which maintain 97 % capacitance retention for Li-ion capacitor and 85 % for Na-ion capacitor after 10,000 cycles.


2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


Carbon ◽  
2021 ◽  
Author(s):  
Huailin Fan ◽  
Xun Hu ◽  
Shu Zhang ◽  
Zhixiang Xu ◽  
Guoming Gao ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Nano Energy ◽  
2021 ◽  
Vol 85 ◽  
pp. 105942
Author(s):  
Haiyan Wang ◽  
Wuquan Ye ◽  
Ying Yang ◽  
Yijun Zhong ◽  
Yong Hu

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


Sign in / Sign up

Export Citation Format

Share Document