Novel SiO2/H2Ti2O5·H2O-Nanochain Composite with High UV–Visible Photocatalytic Activity for Supertransparent Multifunctional Thin Films

Langmuir ◽  
2016 ◽  
Vol 32 (51) ◽  
pp. 13611-13619 ◽  
Author(s):  
Lin Yao ◽  
Junhui He ◽  
Tong Li ◽  
Tingting Ren
2017 ◽  
Vol 201 ◽  
pp. 58-61 ◽  
Author(s):  
Saowalak Krungchanuchat ◽  
Nuengruethai Ekthammathat ◽  
Anukorn Phuruangrat ◽  
Somchai Thongtem ◽  
Titipun Thongtem

CrystEngComm ◽  
2014 ◽  
Vol 16 (15) ◽  
pp. 3155-3167 ◽  
Author(s):  
Yohan Park ◽  
Yulyi Na ◽  
Debabrata Pradhan ◽  
Bong-Ki Min ◽  
Youngku Sohn

Adsorption and UV/visible photocatalytic activity of echinoid-like Ag and Ti-loaded BiOI were tested for methyl orange, Rhodamine B and methylene blue.


2015 ◽  
Vol 14 (6) ◽  
pp. 1110-1119 ◽  
Author(s):  
Karen Barrera-Mota ◽  
Monserrat Bizarro ◽  
Micaela Castellino ◽  
Alberto Tagliaferro ◽  
Aracely Hernández ◽  
...  

Bismuth oxide thin films were obtained by spray pyrolysis. The films were photocatalytically active under visible light, giving good degradation when incorporated into a solar reactor prototype.


2013 ◽  
Vol 562-565 ◽  
pp. 858-863
Author(s):  
Lan Fang Yao ◽  
Xiong Tang ◽  
Xin Pei Yan ◽  
Lin Li

Pure TiO2, Nd3+doped TiO2 and Nd 3+-CTAB co-doped TiO2 nanometer thin films were prepared by the sol-gel technique with tetrabutyl titanate and neodymium nitrate as raw materials and surfactant cetyltrimethylammonium bromide (CTAB) as template. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible absorbance spectroscopy (UV-Vis). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange. The results show that the all samples calcined at 500°C are all anatase, and there are slight red shifts of the Nd3+doped TiO2 and Nd3+-CTAB co-doped TiO2 films compared with pure TiO2 films and the red shift of Nd 3+-CTAB co-doped TiO2 is more obvious than that of Nd 3+ doped TiO2, which is beneficial to improve the photocatalytic efficiency. The1.0% Nd3+-CTAB co-doped TiO2 nanometer film calcined at 500°C had excellent photocatalytic efficiencies and the degradation rate of the film is more than 90% after 120 min.


2018 ◽  
Vol 29 (7) ◽  
pp. 5480-5495 ◽  
Author(s):  
Mohammad Reza Delsouz Khaki ◽  
Mohammad Saleh Shafeeyan ◽  
Abdul Aziz Abdul Raman ◽  
Wan Mohd Ashri Wan Daud

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hang Nguyen Thai Phung ◽  
Van Nguyen Khanh Tran ◽  
Lam Thanh Nguyen ◽  
Loan Kieu Thi Phan ◽  
Phuong Ai Duong ◽  
...  

MoS2/TiO2 heterostructure thin films were fabricated by sol-gel and chemical bath deposition methods. Crystal structure, surface morphology, chemical states of all elements, and optical property of the obtained thin films were characterized by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectroscopy techniques, respectively. Photocatalytic activity of all thin films was evaluated by measuring decomposition rate of methylene blue solution under visible light irradiation. The results indicate that ultrathin MoS2 film on TiO2-glass substrate improves photocatalytic activity of TiO2 in the visible light due to the efficient absorption of visible photon of MoS2 few layers and the transfer of electrons from MoS2 to TiO2. All MoS2/TiO2 heterostructure thin films exhibit higher visible light photocatalytic activity than that of pure MoS2 and TiO2 counterparts. The best MoS2/TiO2 heterostructure thin film at MoS2 layer deposition time of 45 minutes can decompose about 60% MB solution after 150 minutes under visible light irradiation. The mechanism of the enhancement for visible-photocatalytic activity of MoS2/TiO2 heterostructure thin film was also discussed.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. 22-30
Author(s):  
C. Lalhriatpuia ◽  
◽  
Thanhming liana ◽  
K. Vanlaldinpuia

The photocatalytic activity of Nanopillars-TiO2 thin films was assessed in the degradation of Bromophenol blue (BPB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the XRD, SEM and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data showed anatase phase of TiO2 particles with average particle size of 25.4 and 21.9 nm, for S1 and S2 catalysts respectively. The SEM and AFM images indicated the catalyst composed with Nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The average height of the pillars was found to be 180 and 40 nm respectively for the S1 and S2 catalyst. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of BPB using the UV light was studied at wide range of physico-chemical parametric studies to determine the mechanism of degradation as well as the practical applicability of the technique. The batch reactor operations were conducted at varied pH (pH 4.0 to 10.0), BPB initial concentration (1.0 to 20.0 mg/L) and presence of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of BPB. The maximum percent removal of BPB was observed at pH 6.0 and a low initial concentration of the pollutant highly favours the photocatalytic degradation using thin films. The presence of several interfering ions suppressed the photocatalytic activity of thin films to some extent. The time dependence photocatalytic degradation of BPB was demonstrated with the pseudo-first-order rate kinetics. Study was further extended with total organic carbon measurement using the TOC (Total Organic Carbon) analysis. This demonstrated an apparent mineralization of BPB from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document