1D Roughness Driven Depinning of Self-Assembly of Liquid Droplets

Langmuir ◽  
2019 ◽  
Vol 35 (45) ◽  
pp. 14576-14585
Author(s):  
K. Nilavarasi ◽  
Ramkumar S. G. ◽  
V. Madhurima
2018 ◽  
Author(s):  
Rachel L. French ◽  
Ashley N. Reeb ◽  
Himani Aligireddy ◽  
Niraja Kedia ◽  
Dhruva D. Dhavale ◽  
...  

ABSTRACTAggregates of the RNA binding protein TDP-43 are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are neurodegenerative disorders with overlapping clinical, genetic and pathological features. Mutations in the TDP-43 gene are causative of ALS, supporting its central role in pathogenesis. The process of TDP-43 aggregation remains poorly understood and whether this includes formation of intermediate complexes is unknown. We characterized aggregates derived from purified TDP-43 as a function of time and analyzed them under semi-denaturing conditions. Our assays identified oligomeric complexes at the initial time points prior to the formation of large aggregates, suggesting that ordered oligomerization is an intermediate step of TDP-43 aggregation. In addition, we analyzed liquid-liquid phase separation of TDP-43 and detected similar oligomeric assembly upon the maturation of liquid droplets into solid-like fibrils. These results strongly suggest that the oligomers form during the early steps of TDP-43 misfolding. Importantly, ALS-linked mutations A315T and M337V significantly accelerate aggregation, rapidly decreasing the monomeric population and shortening the oligomeric phase. We also show that the aggregates generated from purified protein seed intracellular aggregation, which is detected by established markers of TDP-43 pathology. Remarkably, cytoplasmic aggregate propagation is detected earlier with A315T and M337V and is 50% more widespread than with wild-type aggregates. Our findings provide evidence for a controlled process of TDP-43 self-assembly into intermediate structures that provide a scaffold for aggregation. This process is altered by ALS-linked mutations, underscoring the role of perturbations in TDP-43 homeostasis in protein aggregation and ALS-FTD pathogenesis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sanjib Paul ◽  
Harish Vashisth

We report simulation studies on the self-assembly of a binary mixture of snowman and dumbbell shaped lobed particles. Depending on the lobe size and temperature, different types of self-assembled structures (random aggregates, spherical aggregates, liquid droplets, amorphous wire-like structures, amorphous ring structures, crystalline structures) are observed. At lower temperatures, heterogeneous structures are formed for lobed particles of both shapes. At higher temperatures, homogeneous self-assembled structures are formed mainly by the dumbbell shaped particles, while the snowman shaped particles remain in a dissociated state. We also investigated the porosities of self-assembled structures. The pore diameters in self-assemblies increased with an increase in temperature for a given lobe size. The particles having smaller lobes produced structures with larger pores than the particles having larger lobes. We further investigated the effect of σ, a parameter in the surface-shifted Lennard-Jones potential, on the self-assembled morphologies and their porosities. The self-assembled structures formed at a higher σ value are found to produce larger pores than those at a lower σ.


2022 ◽  
Author(s):  
Gaurav Kumar ◽  
Sharmistha Sinha

Bacterial microcompartments are substrate specific metabolic modules that are conditionally expressed in certain bacterial species. These all protein structures have size in the range of 100-150 nm and are formed by the self-assembly of thousands of protein subunits, all encoded by genes belonging to a single operon. The operon contains genes that encode for both enzymes and shell proteins. The shell proteins self-assemble to form the outer coat of the compartment and enzymes are encapsulated within. A perplexing question in MCP biology is to understand the mechanism which governs the formation of these small yet complex assemblages of proteins. In this work we use 1,2-propanediol utilization microcompartments (PduMCP) as a paradigm to identify the factors that drive the self-assembly of MCP proteins. We find that a major shell protein PduBB tend to self-assemble under macromolecular crowded environment and suitable ionic strength. Microscopic visualization and biophysical studies reveal phase separation to be the principle mechanism behind the self-association of shell protein in the presence of salts and macromolecular crowding. The shell protein PduBB interacts with the enzyme diol-dehydratase PduCDE and co-assemble into phase separated liquid droplets. The co-assembly of PduCDE and PduBB results in the enhancement of catalytic activity of the enzyme. A combination of spectroscopic and biochemical techniques shows the relevance of divalent cation Mg2+ in providing stability to intact PduMCP in vivo. Together our results suggest a combination of protein-protein interactions and phase separation guiding the self-assembly of Pdu shell protein and enzyme in solution phase.


2016 ◽  
Vol 113 (3) ◽  
pp. 493-496 ◽  
Author(s):  
Shani Guttman ◽  
Zvi Sapir ◽  
Moty Schultz ◽  
Alexander V. Butenko ◽  
Benjamin M. Ocko ◽  
...  

Liquid droplets, widely encountered in everyday life, have no flat facets. Here we show that water-dispersed oil droplets can be reversibly temperature-tuned to icosahedral and other faceted shapes, hitherto unreported for liquid droplets. These shape changes are shown to originate in the interplay between interfacial tension and the elasticity of the droplet’s 2-nm-thick interfacial monolayer, which crystallizes at some T = Ts above the oil’s melting point, with the droplet’s bulk remaining liquid. Strikingly, at still-lower temperatures, this interfacial freezing (IF) effect also causes droplets to deform, split, and grow tails. Our findings provide deep insights into molecular-scale elasticity and allow formation of emulsions of tunable stability for directed self-assembly of complex-shaped particles and other future technologies.


2016 ◽  
Vol 38 (1) ◽  
pp. 1600502 ◽  
Author(s):  
Yosuke Iwai ◽  
Yoshiaki Uchida ◽  
Hiroshi Yabu ◽  
Norikazu Nishiyama

Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
Matthew R. Libera

The liquid droplets produced by atomization processes are believed to undergo substantial supercooling during solidification, because the catalytic heterogeneities, for statistical reasons, tend to be isolated in the larger droplets. This supercooling can lead to the nucleation of metastable phases. As part of a study on the effect of liquid supercooling on nonequilibrium solidification, three binary Fe-Ni alloys have been produced by conventional argon atomization (Fe-20Ni, Fe-30Ni, and Fe-40Ni). The primary variables in these experiments are: i) the alloy composition; and ii) the powder particle diameter (inversely proportional to supercooling). Of particular interest in this system is the competitive nucleation kinetics between the stable fee and metastable bec phases. Bcc is expected to nucleate preferentially with decreasing %Ni and decreasing particle diameter.


Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document