Development of a Safe Continuous Process to Sodium Nitrotetrazolate via Solid Phase “Catch and Release”

Author(s):  
Robert H. Muir ◽  
Jon Bragg ◽  
Andrew Pearsall ◽  
Matthew Jorgensen ◽  
Brittany Sims ◽  
...  
Author(s):  
Julie Flouret ◽  
Yves Barré ◽  
Hervé Muhr ◽  
Edouard Plasari

The coprecipitation is a robust and inexpensive process for the treatment of important volumes of low and intermediate radioactive level liquid wastes. Its major inconvenient is the huge volume of sludge generated. The purpose of this work is to optimize the industrial coprecipitation continuous process by achieving the following objectives: - maximize the decontamination efficiency; - minimize the volume of sludge generated by the process; - reduce the treatment cost decreasing the installation volume. An innovative reactor with an infinite recycling ratio was therefore designed. It is a multifunctional reactor composed of two zones: a perfectly mixed precipitation zone and a classifier to perform liquid-solid separation. The experiments are focused on the coprecipitation of strontium by barium sulphate. The effluent containing sulphate ions and the barium nitrate solution are injected in the reaction zone where strontium and barium coprecipitate as sulphates. The produced solid phase is returned into the reaction zone by the classifier and goes out slowly from the reactor bottom with a residence time much higher than the liquid phase. This creates both a high concentration of solid phase in the reaction zone and a high efficiency of decontamination. The experimental conditions simulate the industrial effluents. The total treatment flow rate is 17 L/h, with an effluent flow rate of 16 L/h and a reactive flow rate of 1 L/h, hence a mean residence time of 10 minutes. In these experimental conditions, the molar ratio sulphate/barium after mixing corresponds to 4.9. These conditions are used in the reprocessing plant of La Hague. The decontamination factor reached in these experimental conditions is excellent: DF = 1500. The decontamination factor obtained with the classical continuous process is only equal to 60. Different process parameters are studied in order to optimize the reactor/classifier: residence time, barium nitrate flow rate and racking flow rate. The decrease of barium nitrate flow rate reduces the volume of sludge generated by the process keeping a high efficiency of strontium decontamination: DF = 400. An excess of sulphate is necessary to perform an efficient decontamination, but the molar ratio sulphate/barium can be reduced to 3 instead of 4.9 used industrially. The reactor/classifier also represents an efficient device for the coprecipitation process intensification. Indeed, it can sensibly reduce the final installation size while treating important volume of effluents. This innovative reactor optimizes both the decontamination efficiency of radioactive liquid wastes and the reduction of sludge volume. A reduction of sulphate ions in the discharge is also possible, which is environmentally friendly.


2020 ◽  
Author(s):  
Jakob Walther ◽  
Niklas Erdmann ◽  
Katharina Wastian ◽  
Dorina Strieth ◽  
Roland Ulber

<div> <p>Terrestrial cyanobacteria grow quite poorly as suspension culture. This is one of the reasons why they have not yet been considered as producers of interesting metabolites such as antibacterial substances. Previous work in our group have shown that surface-associated growth can significantly increase productivity [1]. Moving bed bioreactor technology, which is already established in wastewater treatment, offers a possibility to carry out such growth on a larger scale. In these reactors, the bacteria grow on the surface of solid structured carrier particles in areas protected from mechanical abrasion (protected surface). These particles are usually about 1-5 cm in size and are made of high-density polyethylene (HDPE). Moving bed processes for microalgae have only been described for fabric as a solid substrate [2] whereby only 30% of the biomass was actually immobilized on the carrier particles. For this reason, different HDPE carrier particles and different cyanobacteria were investigated. Three different cyanobacteria could be successfully cultivated on two different particles in a 1.5-liter photobioreactor in a moving bed. As an up-scale step, a larger reactor was developed, which provided a larger cultivation surface in combination with a sufficient illumination.</p> <p><strong>Photobioreactor</strong></p> <p>The design of the reactor is similar to Zhuang et al. [2]. Based on an 80x35x40 cm tank, the reactor has a working volume of 65 liters. At a particle filling degree of 27 %, the reactor has a protected cultivation surface area of 11.26 m² within the particles. This corresponds to 173 m² per m³ reactor volume. Their circulation is generated by a gassing unit on the ground. An inclined plate is installed beside the gassing unit, to avoid a flow dead zone at the bottom of the reactor. The reactor is illuminated by LEDs located outside the reactor. The growth is monitored offline by the determination of the dry biomass (bdm) and the measurement of the biofilm thickness by optical coherence tomography (OCT).</p> <p><strong>Results</strong></p> <p>Cultivations with the cyanobacterium Trichocoleus sociatus were carried out. The inoculum was added to the reactor as suspended biomass with a concentration of 0.035 g<sub>bdm</sub>/L. After two weeks, the complete biomass was immobilized as a thin biofilm on the carrier particles. Between day 18 and day 45, an increase in the median biofilm thickness from 36 µm to 65 µm could be measured with an increase of the dry biomass from 0.44 to 1.56 g/L. This volume-specific yield is similar to cultivations in the 1.5-liter photobioreactors with carrier particles.</p> <p> </p> <p><strong>Funding</strong></p> <p>The project is financially supported by the DFG (Project number UL 170/16-1) and the Ministry of Education of Rhineland-Palatinate (bm.rlp) (iProcess intelligent process development – from modelling to product)</p> <p> </p> <p><strong> </strong><strong>References</strong></p> </div> <ol> <li>Strieth, Dorina; Schwing, Julia; Kuhne, Stephan; Lakatos, Michael; Muffler, Kai; Ulber, Roland (2017): A semi-continuous process based on an ePBR for the production of EPS using Trichocoleus sociatus. In: Journal of biotechnology 256, S. 6–12.</li> <li>Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Yin-Hu; Wang, Ting; Zhang, Tian-Yuan (2014): A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. In: Bioresource technology 153, S. 399–402.</li> </ol>


2016 ◽  
Vol 14 (37) ◽  
pp. 8659-8663 ◽  
Author(s):  
Ryan A. Davis ◽  
Kevin Lau ◽  
Sven H. Hausner ◽  
Julie L. Sutcliffe

A rapid, efficient single continuous process for peptide synthesis, cyclization, and radiolabeling on solid-support with a single purification step afforded a high purity radiotracer.


2009 ◽  
Vol 11 (4) ◽  
pp. 697-703 ◽  
Author(s):  
Wenli Ma ◽  
Brian Peterson ◽  
Andrew Kelson ◽  
Edgardo Laborde

2018 ◽  
Vol 14 ◽  
pp. 2665-2679 ◽  
Author(s):  
Sagnik Sengupta ◽  
Mena Asha Krishnan ◽  
Premansh Dudhe ◽  
Ramesh B Reddy ◽  
Bishnubasu Giri ◽  
...  

In this article, we have successfully designed and demonstrated a novel continuous process for assembling targeting ligands, peptidic spacers, fluorescent tags and a chelating core for the attachment of cytotoxic molecules, radiotracers, nanomaterials in a standard Fmoc solid-phase peptide synthesis in high yield and purity. The differentially protected Fmoc-Lys-(Tfa)-OH plays a vital role in attaching fluorescent tags while growing the peptide chain in an uninterrupted manner. The methodology is versatile for solid-phase resins that are sensitive to mild and strong acidic conditions when acid-sensitive side chain amino protecting groups such as Trt (chlorotrityl), Mtt (4-methyltrityl), Mmt (4-methoxytrityl) are employed to synthesise the ligand targeted fluorescent tagged bioconjugates. Using this methodology, DUPA rhodamine B conjugate (DUPA = 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid), targeting prostate specific membrane antigen (PSMA) expressed on prostate, breast, bladder and brain cancers and pteroate rhodamine B, targeting folate receptor positive cancers such as ovarian, lung, endometrium as well as inflammatory diseases have been synthesized. In vitro studies using LNCaP (PSMA +ve), PC-3 (PSMA −ve, FR −ve) and CHO-β (FR +ve) cell lines and their respective competition experiments demonstrate the specificity of the newly synthesized bioconstructs for future application in fluorescent guided intra-operative imaging.


2019 ◽  
Vol 2019 (2) ◽  
pp. 16-23
Author(s):  
Николай Дмитриевич Шишкин ◽  
Nickolai Dmitrievich Shishkin ◽  
Марина Александровна Марышева ◽  
Marina Aleksandrovna Marysheva

The article considers modernization of the design of thermohydrocyclone (THC), where cooling, solidification and heating mechanisms are carried out in one continuous process. This reduces the time of the complete cycle of oil removal from paraffin, increases the productivity and efficiency of the plant. The technological scheme of continuous operation THC is presented. The general factors and simplifying allowances for mathematical modeling of phase transition processes (melting and solidification) are considered. Differential equations for heat transfer in the course of paraffin melting and solidification in a conical layer have been solved analytically. Formulas for determining thickness of the conical layer of the new phase, time of formation of a new solid phase, and average density of the heat flow in the conical layer on a THC wall have been derived. The effect of centrifugal inertia forces is taken into account. The formulas for calculating the basic parameters are summarized in the form of power criterion equations linking Fourier criteria (Fo), Kosovich criteria (Ko) and Pomerantsev criteria (Po) under the quasiconductive non-stationary heat exchange in THC.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
Charles D. Humphrey ◽  
E. H. Cook ◽  
Karen A. McCaustland ◽  
Daniel W. Bradley

Enterically transmitted non-A, non-B hepatitis (ET-NANBH) is a type of hepatitis which is increasingly becoming a significant world health concern. As with hepatitis A virus (HAV), spread is by the fecal-oral mode of transmission. Until recently, the etiologic agent had not been isolated and identified. We have succeeded in the isolation and preliminary characterization of this virus and demonstrating that this agent can cause hepatic disease and seroconversion in experimental primates. Our characterization of this virus was facilitated by immune (IEM) and solid phase immune electron microscopic (SPIEM) methodologies.Many immune electron microscopy methodologies have been used for morphological identification and characterization of viruses. We have previously reported a highly effective solid phase immune electron microscopy procedure which facilitated identification of hepatitis A virus (HAV) in crude cell culture extracts. More recently we have reported utilization of the method for identification of an etiologic agent responsible for (ET-NANBH).


Sign in / Sign up

Export Citation Format

Share Document