Variations in Electrochemical Characteristics of a Platinum Catalyst Enwrapped by a Carbon Shell According to Carbon Layer Thickness

Author(s):  
Dohyeon Lee ◽  
Youngkwang Kim ◽  
Jihyeok Song ◽  
Hee Ji Choi ◽  
Mohanraju Karuppannan ◽  
...  
2002 ◽  
Vol 746 ◽  
Author(s):  
D. Y. Oh ◽  
J. K. Park

ABSTRACTThe CoPt-20at.%C thin films of 20nm thickness were sputter-deposited in the form of CoPt/Cn (n=1: carbon layer thickness=4nm; n=4: each carbon layer thickness=1nm) and were transformation-annealed at 650°C for various times. Carbon was found to dissolve into CoPt lattice and enlarge the c/a ratio of the ordered CoPt lattice. The amount of carbon dissolution increases with the decreasing carbon layer thickness at a given total carbon concentration.The carbon dissolution larger than a critical amount can lead to a shift of the phase equilibrium of ordering and produce a stable fine two-phase mixture of ordered and disordered phases at the equi-atomic composition of Co:Pt. This results in a fine and uniform stagnant grain structure of about 20nm on annealing at 650°C. The carbon dissolution by increasing the c/a ratio of the ordered CoPt lattice reduces both the saturation magnetization and the magnetocrystalline anisotropy constant of the film and leads to a reduction of coercivity of CoPt films.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3864
Author(s):  
Taisiya A. Shalygina ◽  
Mikhail S. Rudenko ◽  
Ivan V. Nemtsev ◽  
Vladimir A. Parfenov ◽  
Svetlana Y. Voronina ◽  
...  

This article presents the surface morphology effect of silicon carbide (SiC) particles on the polyurethane binder’s structure formation in a dispersed-filled composite. The difference in the morphology and surface relief of filler particles was ensured by the implementation of plasma chemical modification. As a result of this modification, the filler consisted of core-shell particles characterized by a SiC core and a carbon shell (SiC@C), as well as a carbon shell decorated with silicon nanoparticles (SiC@C/SiNP) or nanos (SiC@C/SiNW). The study of the relaxation properties of polyurethane composites has shown that the strongest limiting effect on the molecular mobility of boundary layer’s chain segments is exerted by a highly developed surface with a complex relief of SiC@C/SiNP and SiC@C/SiNW particles. An empirical method was proposed to find the polymer fractions spent on the formation of the boundary, transition and bulk layers of the polymer matrix in the composite. It was shown that the morphology of the filler particles’ surface does not affect the dependence of the boundary layer thickness on the filler’s volume fraction. However, with an increase in the degree of surface development, the boundary layer thickness decreases.


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Sign in / Sign up

Export Citation Format

Share Document