scholarly journals Revealing the Structural Stability and Na-Ion Mobility of 3D Superionic Conductor Na3SbS4 at Extremely Low Temperatures

2018 ◽  
Vol 1 (12) ◽  
pp. 7028-7034 ◽  
Author(s):  
Hui Wang ◽  
Yan Chen ◽  
Zachary D. Hood ◽  
Jong Kahk Keum ◽  
Amaresh Samuthira Pandian ◽  
...  
2009 ◽  
Vol 78 (10) ◽  
pp. 104601 ◽  
Author(s):  
Shigeki Endou ◽  
Takashi Ohno ◽  
Yutaka Kishimoto ◽  
Daisuke Nishioka ◽  
Yoshitaka Michihiro ◽  
...  

2020 ◽  
Vol 22 (10) ◽  
pp. 5439-5448
Author(s):  
Songyoot Kaewmala ◽  
Narinthorn Wiriya ◽  
Patcharapohn Chantrasuwan ◽  
Visittapong Yordsri ◽  
Wanwisa Limphirat ◽  
...  

0.5Li2MnO3·0.5LiCoO2 composite cathodes prepared using various heating and cooling rates under 600 °C reveal different microstructural characteristics that significantly impact their structural stability and electrochemical properties.


Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Sign in / Sign up

Export Citation Format

Share Document