Three-Dimensional Interconnected Microporous Carbon Network Derived from Aniline Formaldehyde Resin/Sodium Polyacrylate Interpenetrating Polymer Networks (AF/PAAS IPNs) with Controllable Porosity for Supercapacitors

2019 ◽  
Vol 2 (9) ◽  
pp. 6440-6452 ◽  
Author(s):  
Yan-Dong Ma ◽  
Xi-Wen Chen ◽  
Ling-Bin Kong
2005 ◽  
Vol 873 ◽  
Author(s):  
Masanobu Naito ◽  
Takashi Nakai ◽  
Takuma Kawabe ◽  
Kenji Mori ◽  
Daisuke Furuta ◽  
...  

AbstractEnvironmentally friendly organic-inorganic hybrid materials with repellent activity against marine fouling organisms have been developed using interpenetrating polymer networks (IPNs), composed of a three-dimensional silica matrix of tetraethoxysilane (TEOS) and chain-like polymers, such as poly(methylmethacrylate) (PMMA) and poly(vinylacetate) (PVAc). The repellent activity of the IPNs reached a maximum of approximately 90% relative to that of tetrabutyl tin oxide (TBTO). Simple bioassays using blue mussels and algae were used to screen out the adequate proportions of those components.


2021 ◽  
Author(s):  
Priscila Siqueira ◽  
Ana de Lima ◽  
Felipe Medeiros ◽  
Augusta Isaac ◽  
Katia Novack ◽  
...  

Abstract The hydrogels are advanced materials used in biomedical applications during wound healing, controlled drug release and to prepare scaffolds. In this work are prepared hydrogels of alginate/chitosan (Alg/Ch) semi-interpenetrating polymer networks (semi-IPN’s) and nanocelluloses. The hydrogels after preparation by freeze drying are namely simply as gels. The cellulose nanocrystals (CNC’s) are obtained from acid hydrolysis of bleached Eucalyptus pulps and oxidized cellulose nanocrystals (CNCT’s) prepared by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical catalyzed reaction as known as TEMPO reaction. The cellulose nanofibers (NFC’s) are obtained from mechanical shearing of cellulose pulps and oxidized NFC’s by TEMPO-mediated reaction (NFCT’s). The nanocellulose suspension and gels are characterized by FTIR at ATR mode, TGA, XRD, TEM, SEM, X-ray computed microtomography (micro-CT) and DMTA. The addition of CNC’s, NFC’s, CNCT’s or NFCT’s in the microstructure of gels increases their dimensional stabilities. The best results are obtained when CNCT’s and NFCT’s are added. The mechanical properties and dimensional stability of Alg/Ch semi-IPN’s increase after controlled thermal post-treatment. The heating during thermal post-treatment boosts the physicochemical interactions in the microstructures of semi-IPN’s. The biological assays show biocompatibility of fibroblast cells on the substrates, and differentiation and proliferation up seven days. The optimized mechanical properties, dimensional stability and biocompatibility of the gels studied in this work are important parameters for potential biomedical applications of these biomaterials.


Author(s):  
Vahid Morovati ◽  
Mohammad Ali Saadat ◽  
Roozbeh Dargazany

Abstract Double network (DN) gels are three-dimensional polymer matrices formed by interpenetrating networks. In contrast to the conventional single-network gels, DN gels have significant toughness, which makes them a promising material for different biomedical and biological applications. However, DN gels show complicated inelastic behavior including the Mullins effect and necking instability. Despite extensive efforts on modelling different aspects of the damage process in gels, the micro-mechanical modelling of the mechanisms that lead to necking in DN gels remains to be a challenging task. Here, a constitutive model is proposed to understand and describe the mechanical behavior of DN gels based on statistical micro-mechanics of interpenetrating polymer networks. DN gels behavior is divided into three parts including pre-necking, necking, and hardening. The first network is dominant in the response of the gel in the pre-necking stage. The breakage of the first network to smaller network fractions (clusters) induces the stress softening observed in this stage. The interaction of both networks and the second network are also considered as main contributors to the response of gel in necking and hardening stages, respectively. The contribution of clusters decreases during the necking as the second network starts hardening. The numerical results of the proposed model are validated and compared by uni-axial cyclic tensile experimental data of DN gels.


2013 ◽  
Vol 749 ◽  
pp. 283-288 ◽  
Author(s):  
Yury Pozhidaev ◽  
Oksana Lebedeva ◽  
Evgenya Sipkina ◽  
Alexandra Chesnokova ◽  
Nikolay Ivanov

Hybrid materials are attractive for a large range of applications from medicine and biotechnology to telecommunication systems and fuel cells. In the present research we have studied sol-gel synthesis of hybrid composites based on carbofunctional organosilicon monomers N,N-bis-(3-triethoxysilylpropyl) thiocarbamide (I) or 2-{[3-(triethoxysilyl) propyamino} pyridine (II), and copolymers of ethylene glycol vinyl glycidyl ether with vinyl chloride.The polymeric materials were characterized by scanning electron microscope (SEM) and IR-spectroscopy. Gel products possess high thermal stability (decomposition temperatures reach 250 °С) and have developed specific surface (to 20 m2g-1).The synthesized composites comprise semi-interpenetrating polymer networks, consisting of three-dimensional and linear polymers that cannot be separated due to the mechanical interlacing of theirs chains. Hybrid composites have a value of sorption capacity for Pt (IV) ions of 70 (I) and 28 (II) mgg-1. Proton conductivity of membranes based on the synthesized composites is characterized by the values 3.52 10-2(I) and 1.19 10-2(II) Scm-1measured at temperature of 25 °C.


Polymer ◽  
2021 ◽  
Vol 224 ◽  
pp. 123671
Author(s):  
Gregory N. Smith ◽  
Erik Brok ◽  
Martin Schmiele ◽  
Kell Mortensen ◽  
Wim G. Bouwman ◽  
...  

Author(s):  
Jiayi Liu ◽  
Shixiang Wang ◽  
Qiaoqiao Shen ◽  
Lingmin Kong ◽  
Guangsu Huang ◽  
...  

2021 ◽  
Author(s):  
Hang Mei ◽  
Huajing Liu ◽  
Qianqian Shang ◽  
Ying Dong ◽  
Stig Pedersen-Bjergaard ◽  
...  

A versatile organic-solvent-free electromembrane extraction (EME) system, which could be successfully used for the extraction of both basic and acidic analytes, is proposed based on semi-interpenetrating polymer networks.


Sign in / Sign up

Export Citation Format

Share Document