Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration

2016 ◽  
Vol 8 (33) ◽  
pp. 21145-21154 ◽  
Author(s):  
Eugene Lih ◽  
Ki Wan Park ◽  
So Young Chun ◽  
Hyuncheol Kim ◽  
Tae Gyun Kwon ◽  
...  
2020 ◽  
Vol 268 ◽  
pp. 127609
Author(s):  
Yong Xu ◽  
Litao Jia ◽  
Zongxin Wang ◽  
Gening Jiang ◽  
Guangdong Zhou ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12560
Author(s):  
Su Hee Kim ◽  
Donghak Kim ◽  
Misun Cha ◽  
Soo Hyun Kim ◽  
Youngmee Jung

A dome-shaped elastic poly (l-lactide-co-caprolactone) (PLCL) scaffold with a channel and pore structure was fabricated by a combinative method of 3D printing technology and the gel pressing method (13 mm in diameter and 6.5 mm in thickness) for patient-specific regeneration. The PLCL scaffold was combined with adipose decellularized extracellular matrix (adECM) and heart decellularized extracellular matrix (hdECM) hydrogels and human adipose-derived stem cells (hADSCs) to promote adipogenesis and angiogenesis. These scaffolds had mechanical properties similar to those of native adipose tissue for improved tissue regeneration. The results of the in vitro real-time PCR showed that the dECM hydrogel mixture induces adipogenesis. In addition, the in vivo study at 12 weeks demonstrated that the tissue-engineered PLCL scaffolds containing the hydrogel mixture (hdECM/adECM (80:20)) and hADSCs promoted angiogenesis and adipose tissue formation, and suppressed apoptosis. Therefore, we expect that our constructs will be clinically applicable as material for the regeneration of patient-specific large-sized adipose tissue.


2020 ◽  
Vol 21 (15) ◽  
pp. 5447 ◽  
Author(s):  
Unai Mendibil ◽  
Raquel Ruiz-Hernandez ◽  
Sugoi Retegi-Carrion ◽  
Nerea Garcia-Urquia ◽  
Beatriz Olalde-Graells ◽  
...  

The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.


The strategy of heart tissue engineering is simple enough: first remove all the cells from a organ then take the protein scaffold left behind and repopulate it with stem cells immunologically matched to the patient in need. While various suc- cessful methods for decellularization have been developed, and the feasibility of using decellularized whole hearts and extracellular matrix to support cells has been demonstrated, the reality of creating whole hearts for transplantation and of clinical application of decellularized extracellular matrix-based scaffolds will require much more research. For example, further investigations into how lineage-restricted progenitors repopulate the decellularized heart and differentiate in a site-specific manner into different populations of the native heart would be essential. The scaffold heart does not have to be human. Pig hearts carries all the essential components of the extracellular matrix. Through trial and error, scaling up the concentration, timing and pressure of the detergents, researchers have refined the decellularization process on hundreds of hearts and other organs, but this is only the first step. Further, the framework must be populated with human cells. Most researchers in the field use a mixture of two or more cell types, such as endothelial precursor cells to line blood vessels and muscle progenitors to seed the walls of the chambers. The final challenge is one of the hardest: vasculariza- tion, placing a engineered heart into a living animal, integration with the recipient tissue, and keeping it beating for a long time. Much remains to be done before a bioartificial heart is available for transplantation in humans.


2021 ◽  
Author(s):  
Fernanda C. P. Mesquita ◽  
Jacquelynn Morrissey ◽  
Po-Feng Lee ◽  
Gustavo Monnerat ◽  
Yutao Xi ◽  
...  

Decellularized extracellular matrix (dECM) from human atria preserves key native components that directed the cardiac differentiation of hiPSCs to an atrial-like phenotype, yielding a twofold increase of functional atrial-like cells.


2021 ◽  
Vol 18 ◽  
pp. 88-96
Author(s):  
Wenhui Zhang ◽  
Aoling Du ◽  
Shun Liu ◽  
Mingyue Lv ◽  
Shenghua Chen

2019 ◽  
Vol 91 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Lorenzo Tavelli ◽  
Michael K. McGuire ◽  
Giovanni Zucchelli ◽  
Giulio Rasperini ◽  
Stephen E. Feinberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document