scholarly journals Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds

2020 ◽  
Vol 21 (15) ◽  
pp. 5447 ◽  
Author(s):  
Unai Mendibil ◽  
Raquel Ruiz-Hernandez ◽  
Sugoi Retegi-Carrion ◽  
Nerea Garcia-Urquia ◽  
Beatriz Olalde-Graells ◽  
...  

The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.

2016 ◽  
Vol 8 (33) ◽  
pp. 21145-21154 ◽  
Author(s):  
Eugene Lih ◽  
Ki Wan Park ◽  
So Young Chun ◽  
Hyuncheol Kim ◽  
Tae Gyun Kwon ◽  
...  

2020 ◽  
Author(s):  
Amin Ebrahimi Sadrabadi ◽  
Payam Baei ◽  
Samaneh Hosseini ◽  
Mohamadreza Baghaban Eslaminejad

Author(s):  
Hiroto Hanai ◽  
George Jacob ◽  
Shinichi Nakagawa ◽  
Rocky S. Tuan ◽  
Norimasa Nakamura ◽  
...  

BackgroundIt is well studied that preparations of decellularized extracellular matrix (ECM) obtained from mesenchymal tissues can function as biological scaffolds to regenerate injured musculoskeletal tissues. Previously, we reported that soluble decellularized ECMs derived from meniscal tissue demonstrated excellent biocompatibility and produced meniscal regenerate with native meniscal anatomy and biochemical characteristics. We therefore hypothesized that decellularized mesenchymal tissue ECMs from various mesenchymal tissues should exhibit tissue-specific bioactivity. The purpose of this study was to test this hypothesis using porcine tissues, for potential applications in musculoskeletal tissue engineering.MethodsNine types of porcine tissue, including cartilage, meniscus, ligament, tendon, muscle, synovium, fat pad, fat, and bone, were decellularized using established methods and solubilized. Although the current trend is to develop tissue specific decellularization protocols, we selected a simple standard protocol across all tissues using Triton X-100 and DNase/RNase after mincing to compare the outcome. The content of sulfated glycosaminoglycan (sGAG) and hydroxyproline were quantified to determine the biochemical composition of each tissue. Along with the concentration of several growth factors, known to be involved in tissue repair and/or maturation, including bFGF, IGF-1, VEGF, and TGF-β1. The effect of soluble ECMs on cell differentiation was explored by combining them with 3D collagen scaffold culturing human synovium derived mesenchymal stem cells (hSMSCs).ResultsThe decellularization of each tissue was performed and confirmed both histologically [hematoxylin and eosin (H&E) and 4’,6-diamidino-2-phenylindole (DAPI) staining] and on the basis of dsDNA quantification. The content of hydroxyproline of each tissue was relatively unchanged during the decellularization process when comparing the native and decellularized tissue. Cartilage and meniscus exhibited a significant decrease in sGAG content. The content of hydroxyproline in meniscus-derived ECM was the highest when compared with other tissues, while sGAG content in cartilage was the highest. Interestingly, a tissue-specific composition of most of the growth factors was measured in each soluble decellularized ECM and specific differentiation potential was particularly evident in cartilage, ligament and bone derived ECMs.ConclusionIn this study, soluble decellularized ECMs exhibited differences based on their tissue of origin and the present results are important going forward in the field of musculoskeletal regeneration therapy.


2020 ◽  
Vol 268 ◽  
pp. 127609
Author(s):  
Yong Xu ◽  
Litao Jia ◽  
Zongxin Wang ◽  
Gening Jiang ◽  
Guangdong Zhou ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4628 ◽  
Author(s):  
Kevin Dzobo ◽  
Keolebogile Shirley Caroline M. Motaung ◽  
Adetola Adesida

The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 597-606 ◽  
Author(s):  
Anthony Atala ◽  
Darrell J. Irvine ◽  
Marsha Moses ◽  
Sunil Shaunak

AbstractOne of the major challenges in the field of regenerative medicine is how to optimize tissue regeneration in the body by therapeutically manipulating its natural ability to form scar at the time of injury or disease. It is often the balance between tissue regeneration, a process that is activated at the onset of disease, and scar formation, which develops as a result of the disease process that determines the ability of the tissue or organ to be functional. Using biomaterials as scaffolds often can provide a “bridge” for normal tissue edges to regenerate over small distances, usually up to 1 cm. Larger tissue defect gaps typically require both scaffolds and cells for normal tissue regeneration to occur without scar formation. Various strategies can help to modulate the scar response and can potentially enhance tissue regeneration. Understanding the mechanistic basis of such multivariate interactions as the scar microenvironment, the immune system, extracellular matrix, and inflammatory cytokines may enable the design of tissue engineering and wound healing strategies that directly modulate the healing response in a manner favorable to regeneration.


2020 ◽  
Author(s):  
Jessica L. Ungerleider ◽  
Monika Dzieciatkowska ◽  
Kirk C. Hansen ◽  
Karen L. Christman

AbstractDecellularized extracellular matrix (ECM) hydrogels present a novel, clinical intervention for a myriad of regenerative medicine applications. The source of ECM is typically the same tissue to which the treatment is applied; however, the need for tissue specific ECM sources has not been rigorously studied. We hypothesized that tissue specific ECM would improve regeneration through preferentially stimulating physiologically relevant processes (e.g. progenitor cell proliferation and differentiation). One of two decellularized hydrogels (tissue specific skeletal muscle or non mesoderm-derived lung) or saline were injected intramuscularly two days after notexin injection in mice (n=7 per time point) and muscle was harvested at days 5 and 14 for histological and gene expression analysis. Both injectable hydrogels were decellularized using the same detergent and were controlled for donor characteristics (i.e. species, age). At day 5, the skeletal muscle ECM hydrogel significantly increased the density of Pax7+ satellite cells in the muscle. Gene expression analysis at day 5 showed that skeletal muscle ECM hydrogels increased expression of genes implicated in muscle contractility. By day 14, skeletal muscle ECM hydrogels improved muscle regeneration over saline and lung ECM hydrogels as shown through a shift in fiber cross sectional area distribution towards larger fibers. This data indicates a potential role for muscle-specific regenerative capacity of decellularized, injectable muscle hydrogels. Further transcriptomic analysis of whole muscle mRNA indicates the mechanism of tissue specific ECM-mediated tissue repair may be immune and metabolism pathway-driven. Taken together, this suggests there is benefit in using tissue specific ECM for regenerative medicine applications.


Sign in / Sign up

Export Citation Format

Share Document