scholarly journals Three-Dimensional Integration of Functional Oxides and Crystalline Silicon for Optical Neuromorphic Computing Using Nanometer-Scale Oxygen Scavenging Barriers

2021 ◽  
Vol 4 (2) ◽  
pp. 2153-2159
Author(s):  
J. Elliott Ortmann ◽  
Albina Y. Borisevich ◽  
Sunah Kwon ◽  
Agham Posadas ◽  
Moon J. Kim ◽  
...  
1988 ◽  
Vol 141 ◽  
Author(s):  
James P. Lavine ◽  
Gilbert A. Hawkins

AbstractA three-dimensional Monte Carlo computer program has been developed to study the heterogeneous nucleation and growth of oxide precipitates during the thermal treatment of crystalline silicon. In the simulations, oxygen atoms move on a lattice with randomly selected lattice points serving as nucleation sites. The change in free energy that the oxygen cluster would experience in gaining or losing one oxygen atom is used to govern growth or dissolution of the cluster. All the oxygen atoms undergo a jump or a growth decision during each time step of the anneal. The growth and decay kinetics of each nucleation site display interesting fluctuation phenomena. The time dependence of the cluster size generally differs from the expected 3/2 power law due to the fluctuations in oxygen arrival at and incorporation in a precipitate. Competition between growing sites and coarsening are observed.


2011 ◽  
Vol 17 (S2) ◽  
pp. 992-993
Author(s):  
M Zhao ◽  
B Ming ◽  
P Kavuri ◽  
A Vladár

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


1995 ◽  
Vol 380 ◽  
Author(s):  
S. P. Duttagupta ◽  
C. Peng ◽  
L. Tsybeskov ◽  
P. M. Fauchet

ABSTRACTWe have investigated several methods to form submicron-size porous silicon regions. Porous silicon can emit light from the violet to past 1.5 μm with high photoluminescence efficiency at room temperature. It is composed of a high density of nanometer-scale crystalline silicon wires or dots. To integrate light-emitting porous silicon (LEPSi) LEDs with conventional Si microelectronics, it is necessary to produce miniature LEPSi regions adjacent to fully protected crystalline silicon regions. These techniques can be divided into two groups. In the first group formation of LEPSi is prevented during electrochemistry. Using optical and electron beam lithography, and a trilayer process with silicon nitride or amorphization by ion-implantation, we have made LEPSi patterns as small as 100 nm. In the second group, the formation of LEPSi during electrochemistry is enhanced by ion-milling or reactive ion-etching which we have found to help the pore nucleation. We have used a variety of mapping techniques, such as photoluminescence, atomic force and electron beam microscopies, to characterize the sharpness of the interface between the porous silicon and crystalline silicon regions.


Sign in / Sign up

Export Citation Format

Share Document