Monte Carlo Simulation of Precipitate Nucleation and Growth: Time Dependent Results

1988 ◽  
Vol 141 ◽  
Author(s):  
James P. Lavine ◽  
Gilbert A. Hawkins

AbstractA three-dimensional Monte Carlo computer program has been developed to study the heterogeneous nucleation and growth of oxide precipitates during the thermal treatment of crystalline silicon. In the simulations, oxygen atoms move on a lattice with randomly selected lattice points serving as nucleation sites. The change in free energy that the oxygen cluster would experience in gaining or losing one oxygen atom is used to govern growth or dissolution of the cluster. All the oxygen atoms undergo a jump or a growth decision during each time step of the anneal. The growth and decay kinetics of each nucleation site display interesting fluctuation phenomena. The time dependence of the cluster size generally differs from the expected 3/2 power law due to the fluctuations in oxygen arrival at and incorporation in a precipitate. Competition between growing sites and coarsening are observed.

1988 ◽  
Vol 141 ◽  
Author(s):  
James P. Lavine ◽  
Russell J. Taras ◽  
Gilbert A. Hawkins

AbstractInterstitial oxygen precipitates in silicon during thermal treatment. The amount precipitated increases in an S-shaped fashion as a function of increasing initial interstitial oxygen concentration. A likely hypothesis for this behavior is that the number of nucleation sites that develop into precipitates (successful sites) varies with the initial interstitial oxygen concentration as well as with the precipitation rate at each site. In this paper, a deterministic precipitate growth model is first used to show that a fit to the present data requires the precipitate density to increase by more than a factor of 10 when the oxygen concentration goes from 24 to 40 ppma.Three-dimensional Monte Carlo calculations are then used to show how the nucleation site survival probability depends on the initial number of oxygen atoms at the site and the oxygen concentration. The program treats oxygen diffusion, growth at nucleation sites by the addition of oxygen atoms, and loss at nucleation sites by the escape of oxygen atoms.


2017 ◽  
Author(s):  
Christoph Köhn ◽  
Martin Bødker Enghoff ◽  
Henrik Svensmark

Abstract. The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density.We initiate a swarm of sulphuric acid molecules with a size of 0.15 nm with densities between 107 and 108 cm−3 at temperatures of 200 and 300 K. After every time step, we update the position and velocity of particles as a function of size-dependent diffusion coefficients. If two particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule.We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate of clusters with a radius of 0.85 nm as a function of time, initial particle density and temperature. For 200 K, the nucleation rate increases as a function of time; for 300 K we observe an interplay between clustering and evaporation and thus the oscillation of the nucleation rate around the mean nucleation rate. The nucleation rates obtained from the presented model agree well with experimentally obtained values which serves as a benchmark of our code. In contrast to previous nucleation models, we here present for the first time a code capable of tracing individual particles and thus of capturing the physics related to the discrete nature of particles.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Bernd Michael Mueller-Bierl ◽  
Kamil Uludag ◽  
Philippe L. Pereira ◽  
Fritz Schick

Extravascular signal decay rate R2 or R2∗as a function of blood oxygenation, geometry, and field strength was calculated using a Monte Carlo (MC) algorithm for a wider parameter range than hitherto by others. The relaxation rates of gradient-recalled-echo (GRE) and Hahn-spin-echo (HSE) imaging in the presence of blood vessels (ranging from capillaries to veins) have been computed for a wide range of field strengths up to 9.4 T and 50% blood deoxygenation. The maximum HSE decay was found to be shifted to lower radii in higher compared to lower field strengths. For GRE, however, the relaxation rate was greatest for large vessels at any field strength. In addition, assessments of computational reliability have been carried out by investigating the influence of the time step, the Monte Carlo step procedure, boundary conditions, the number of angles between the vessel and the exterior fieldB0, the influence of neighboring vessels having the same orientation as the central vessel, and the number of proton spins. The results were compared with those obtained from a field distribution of the vessel computed by an analytic formula describing the field distribution of an ideal object (an infinitely long cylinder). It was found that the time step is not critical for values equal to or lower than 200 microseconds. The choice of the MC step procedure (three-dimensional Gaussian diffusion, constant one- or three-dimensional diffusion step) also failed to influence the results significantly; in contrast, the free boundary conditions, as well as taking too few angles into account, did introduce errors. Next neighbor vessels with the same orientation as the main vessel did not contribute significantly to signal decay. The total number of particles simulated was also found to play a minor role in computing R2/ R2∗.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Naoya Takahashi ◽  
Shinji Toda

AbstractExamining the regularity in slip over seismic cycles leads to an understanding of earthquake recurrence and provides the basis for probabilistic seismic hazard assessment. Systematic analysis of three-dimensional paleoseismic trenches and analysis of offset markers along faults reveal slip history. Flights of displaced terraces have also been used to study slips of paleoearthquakes when the number of earthquakes contributing to the observed displacement of a terrace is known. This study presents a Monte Carlo-based approach to estimating slip variability using displaced terraces when a detailed paleoseismic record is not available. First, we mapped fluvial terraces across the Kamishiro fault, which is an intra-plate reverse fault in central Japan, and systematically measured the cumulative dip slip of the mapped terraces. By combining these measurements with the age of the paleoearthquakes, we estimated the amount of dip slip for the penultimate event (PE) and antepenultimate event (APE) to be 1.6 and 3.4 m, respectively. The APE slip was nearly three times larger than the most recent event of 2014 (Mw 6.2): 1.2 m. This suggests that the rupture length of the APE was much longer than that of the 2014 event and the entire Kamishiro fault ruptured with adjacent faults during the APE. Thereafter, we performed the Monte Carlo simulations to explore the possible range of the coefficient of variation for slip per event (COVs). The simulation considered all the possible rupture histories in terms of the number of events and their slip amounts. The resulting COVs typically ranged between 0.3 and 0.54, indicating a large variation in the slip per event of the Kamishiro fault during the last few thousand years. To test the accuracy of our approach, we performed the same simulation to a fault whose slip per event was well constrained. The result showed that the error in the COVs estimate was less than 0.15 in 86% of realizations, which was comparable to the uncertainty in COVs derived from a paleoseismic trenching. Based on the accuracy test, we conclude that the Monte Carlo-based approach should help assess the regularity of earthquakes using an incomplete paleoseismic record.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 129
Author(s):  
Yuan Li ◽  
Ni Zhang ◽  
Yuejiao Gong ◽  
Wentao Mao ◽  
Shiguang Zhang

Compared with continuous elements, discontinuous elements advance in processing the discontinuity of physical variables at corner points and discretized models with complex boundaries. However, the computational accuracy of discontinuous elements is sensitive to the positions of element nodes. To reduce the side effect of the node position on the results, this paper proposes employing partially discontinuous elements to compute the time-domain boundary integral equation of 3D elastodynamics. Using the partially discontinuous element, the nodes located at the corner points will be shrunk into the element, whereas the nodes at the non-corner points remain unchanged. As such, a discrete model that is continuous on surfaces and discontinuous between adjacent surfaces can be generated. First, we present a numerical integration scheme of the partially discontinuous element. For the singular integral, an improved element subdivision method is proposed to reduce the side effect of the time step on the integral accuracy. Then, the effectiveness of the proposed method is verified by two numerical examples. Meanwhile, we study the influence of the positions of the nodes on the stability and accuracy of the computation results by cases. Finally, the recommended value range of the inward shrink ratio of the element nodes is provided.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1145
Author(s):  
Prem. C. Pandey ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Prussian blue nanoparticles (PBN) exhibit selective fluorescence quenching behavior with heavy metal ions; in addition, they possess characteristic oxidant properties both for liquid–liquid and liquid–solid interface catalysis. Here, we propose to study the detection and efficient removal of toxic arsenic(III) species by materializing these dual functions of PBN. A sophisticated PBN-sensitized fluorometric switching system for dosage-dependent detection of As3+ along with PBN-integrated SiO2 platforms as a column adsorbent for biphasic oxidation and elimination of As3+ have been developed. Colloidal PBN were obtained by a facile two-step process involving chemical reduction in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (EETMSi) and cyclohexanone as reducing agents, while heterogeneous systems were formulated via EETMSi, which triggered in situ growth of PBN inside the three-dimensional framework of silica gel and silica nanoparticles (SiO2). PBN-induced quenching of the emission signal was recorded with an As3+ concentration (0.05–1.6 ppm)-dependent fluorometric titration system, owing to the potential excitation window of PBN (at 480–500 nm), which ultimately restricts the radiative energy transfer. The detection limit for this arrangement is estimated around 0.025 ppm. Furthermore, the mesoporous and macroporous PBN-integrated SiO2 arrangements might act as stationary phase in chromatographic studies to significantly remove As3+. Besides physisorption, significant electron exchange between Fe3+/Fe2+ lattice points and As3+ ions enable complete conversion to less toxic As5+ ions with the repeated influx of mobile phase. PBN-integrated SiO2 matrices were successfully restored after segregating the target ions. This study indicates that PBN and PBN-integrated SiO2 platforms may enable straightforward and low-cost removal of arsenic from contaminated water.


2021 ◽  
Vol 154 (21) ◽  
pp. 214110
Author(s):  
Tyler A. Anderson ◽  
C. J. Umrigar

Sign in / Sign up

Export Citation Format

Share Document