Solution Combustion Synthesis of High Surface Area CeO2 Nanopowders for Catalytic Applications: Reaction Mechanism and Properties

2018 ◽  
Vol 1 (2) ◽  
pp. 675-685 ◽  
Author(s):  
Wooram Kang ◽  
Derya Oncel Ozgur ◽  
Arvind Varma
2013 ◽  
Vol 757 ◽  
pp. 85-98 ◽  
Author(s):  
L.D. Jadhav ◽  
S.P. Patil ◽  
A.P. Jamale ◽  
A.U. Chavan

Solution combustion synthesis technique is one of the novel techniques used to prepare nanoparticles, multi-component ceramic oxides and nanocomposites with properties better than conventionally prepared one and these materials have been used for various applications such as sensors, catalysts, and materials for solid oxide fuel cell (SOFCs). In the present work, the method has been used to prepare nanoparticles of 10 mol% Gd doped ceria (GDC) and Cu and its oxides. The oxidant to fuel (O/F) ratio is found to affect the powder properties and even compositional homogeneity. In glycine-nitrate combustion synthesis of GDC, as revealed by XRD studies, phase pure nanoparticles with crystallite size in the range 9-12nm were obtained for all the O/F ratios. TEM measurements of calcined powder showed hexagonal shaped particles of roughly 20nm size. The exothermicity was increased with the oxidant to fuel ratio resulting in high surface area and soft agglomerates. A slightly lean O/F ratio gives surface area of 73 m2/g and soft agglomerates (D50= 5.34 mm), which eventually results into high sintering density at low temperature. Raman Spectra of GDC showed a sharp and intense peak at 467 cm−1which corresponds to CeO2due to F2gsymmetry of the cubic phase. In combustion synthesis of copper nitrate and citirc acid, the compositional homogenity and phase purity was affected by the oxidant to fuel ratio. The combustion at stoichiometric O/F ratio gives Cu nano particles, lean O/F ratio gives nanoparticles of Cu, CuO and Cu2O and rich ratio gives pure CuO nanoparticles. These nanoparticles have been studied with different characterization techniques like XRD, TG-DTA, SEM, TEM, FT-IR and Raman.


2020 ◽  
Vol 221 ◽  
pp. 462-475
Author(s):  
V. Danghyan ◽  
T. Orlova ◽  
S. Roslyakov ◽  
E.E. Wolf ◽  
A.S. Mukasyan

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Imarally V. de S. R. Nascimento ◽  
Willams T. Barbosa ◽  
Raúl G. Carrodeguas ◽  
Marcus V. L. Fook ◽  
Miguel A. Rodríguez

The objective of this work has been the synthesis of wollastonite by solution combustion method. The novelty of this work has been obtaining the crystalline phase without the need of thermal treatments after the synthesis. For this purpose, urea was used as fuel. Calcium nitrate was selected as a source of calcium and colloidal silica served as a source of silicon. The effect of the amount of fuel on the combustion process was investigated. Temperature of the combustion reaction was followed by digital pyrometry. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area. The results showed that the combustion synthesis provides nanostructured powders characterized by a high surface area. When excess of urea was used, wollastonite-2M was obtained with a submicronic structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sangeeta Adhikari ◽  
Debasish Sarkar

Attempts were made to compare the photocatalytic efficacy in between quasi-fiber and near spherical commercial grade ZnO through the addition of monoclinic WO3nanocuboid. Mixed oxide semiconductors were assessed for their dye degradation performance under irradiation of visible light energy. Surface area and the particle morphology pattern have an influence on the resultant photocatalytic features of these mixed oxide composites. The high porous quasi-fibrous ZnO was successfully fabricated by a simple solution combustion method. It is deliberately made of clusters of primary near spherical particles that supports WO3nanocuboid embedment and shows interactive characteristics in comparison to the counterpart commercial near spherical ZnO combined with WO3. The photocatalytic activity significantly increases up to 95% under visible radiation for 90 min due to high surface area imparted by unique quasi-fiber morphology. The photogenerated electron-hole pair interaction mechanism has been proposed to support the photocatalytic behavior.


Sign in / Sign up

Export Citation Format

Share Document