One-step alkali chloride-assisted solution combustion synthesis of 3YSZ nanopowders with ultrahigh specific surface area

2017 ◽  
Vol 43 (18) ◽  
pp. 16043-16047 ◽  
Author(s):  
Aihong Han ◽  
Zongliang Wu ◽  
Huanglong Zou
2014 ◽  
Vol 604 ◽  
pp. 93-101
Author(s):  
Maris Kodols ◽  
Sabine Didrihsone ◽  
Janis Grabis

The influence of glycine, glycerine, ethylene glycol and citric acid fuel and their ratio to NO3- on formation and dispersity of Bi2WO6 nanoparticles prepared by combustion synthesis has been studied. The pure crystalline Bi2WO6 with specific surface area 24,8 m2/g and crystallite size of 28 nm was obtained by using glycerine as fuel at its ratio to NO3- of 0,67. The photocatalytic activity of the prepared Bi2WO6 in degradation of methylene blue depended on its specific surface area of samples and solution pH.


2018 ◽  
Vol 57 (3) ◽  
pp. 1464-1473 ◽  
Author(s):  
Alexander Khort ◽  
Kirill Podbolotov ◽  
Raquel Serrano-García ◽  
Yurii Gun’ko

RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19934-19939 ◽  
Author(s):  
Yuhang Zhao ◽  
Ping Liu ◽  
Xiaodong Zhuang ◽  
Dongqing Wu ◽  
Fan Zhang ◽  
...  

A hierarchical porous polymeric network (HPPN) with ultrahigh specific surface area up to 2870 m2 g−1 was synthesized via a one-step ionothermal synthesis method without using templates.


RSC Advances ◽  
2019 ◽  
Vol 9 (22) ◽  
pp. 12737-12746 ◽  
Author(s):  
Tian Qiu ◽  
Jian-Guo Yang ◽  
Xue-Jie Bai ◽  
Yu-Ling Wang

Herein, synthetic graphite materials with hierarchical pores and large specific surface area were prepared by one-step impregnation with lignite as the carbon source, H2SO4 as the oxidant, and H3PO4 as the activator.


Author(s):  
Valentin I. Romanovsky ◽  
Alexander A. Hort ◽  
Kirill B. Podbolotov ◽  
Nikolay Yu. Sdobnyakov ◽  
Vladimir S. Myasnichenko ◽  
...  

In this work, we studied possibility to obtain bimetallic nanopowders by our modified solution combustion synthesis method using citric acid as a fuel. Stoichiometric amounts of metal nitrates with metal to metal ratios 1:1 and 1:2 and fuels with final oxidizer to fuel ratio of 1.75 were used as initial components to prepare aqueous solutions. The almost complete absence of metal oxide phases was confirmed by energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis of obtained materials showed that all samples are pure bimetallic nanopowders with distorted cubic crystal structure of each metal. According to high resolution transmission electron microscopy the mean diameter of metallic particles are about 10 nm for all nanopowders. The calculated interplanar distances of crystals of metal particles as well as detailed scanning transmission electron microscopy studying showed uniform distribution of different metal spices into nanoparticles. Thus, we can conclude the nanopowders are bimetallic particles with co-integrated crystal structures of different metalic spices. We suppose, the possibility of solution combustion synthesis of bimetallic nanopowder in the air environment is due to a combination of type and amount of the fuels as well as technological conditions of the synthesis. These lead to rapid combustion process at low temperature. In addition, protective inert atmosphere appears above freshly synthesized metal nanopowders during thermal decompositions of the fuels that eventually prevent metal oxidation. Modified SCS method could be successfully used for one-step synthesis of complex oxide-oxide and metal-oxide core-shell nanostructures. For citation: Romanovskii V.I., Khort A.A., Podbolotov K.B., Sdobnyakov N.Y., Myasnichenko V.S., Sokolov D.N. One-step synthesis of polymetallic nanoparticles in air invironment. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 42-47


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2052
Author(s):  
Ian Clark ◽  
Jacob Smith ◽  
Rachel L. Gomes ◽  
Edward Lester

Core-shell Zinc Oxide/Layered Double Hydroxide (ZnO@LDH) composite nanomaterials have been produced by a one-step continuous hydrothermal synthesis process, in an attempt to further enhance the application potential of layered double hydroxide (LDH) nanomaterials. The synthesis involves two hydrothermal reactors in series with the first producing a ZnO core and the second producing the Mg2Al-CO3 shell. Crystal domain length of single phase ZnO and composite ZnO was 25 nm and 42 nm, respectively. The ZnO@LDH composite had a specific surface area of 76 m2 g−1, which was larger than ZnO or Mg2Al-CO3 when produced separately (53 m2 g−1 and 58 m2 g−1, respectively). The increased specific surface area is attributed to the structural arrangement of the Mg2Al-CO3 in the composite. Platelets are envisaged to nucleate on the core and grow outwards, thus reducing the face–face stacking that occurs in conventional Mg2Al-CO3 synthesis. The Mg/Al ratio in the single phase LDH was close to the theoretical ratio of 2, but the Mg/Al ratio in the composite was 1.27 due to the formation of Zn2Al-CO3 LDH from residual Zn2+ ions. NaOH concentration was also found to influence Mg/Al ratio, with lower NaOH resulting in a lower Mg/Al ratio. NaOH concentration also affected morphology and specific surface area, with reduced NaOH content in the second reaction stage causing a dramatic increase in specific surface area (> 250 m2 g−1). The formation of a core-shell composite material was achieved through continuous synthesis; however, the final product was not entirely ZnO@Mg2Al-CO3. The product contained a mixture of ZnO, Mg2Al-CO3, Zn2Al-CO3, and the composite material. Whilst further optimisation is required in order to remove other crystalline impurities from the synthesis, this research acts as a stepping stone towards the formation of composite materials via a one-step continuous synthesis.


2017 ◽  
Vol 253 ◽  
pp. 270-276 ◽  
Author(s):  
Alexander Khort ◽  
Kirill Podbolotov ◽  
Raquel Serrano-García ◽  
Yurii K. Gun’ko

2014 ◽  
Vol 530-531 ◽  
pp. 41-44
Author(s):  
Li Zhu Chen ◽  
Yong Tang Jia ◽  
Cheng Cheng Yan ◽  
Hui Yu ◽  
Feng Chun Dong

One-step process of poly(styrene-co-maleic acid)(PS-PMA) nanofibers/QCM combination system was proposed as a novel ammonia detection in this study. Nano-sized PS-PMA fibers were deposited on the QCM electrodes via electrospinning technique directly, which can retain the original high specific surface area of PS-PMA nanofibers, and simplify NH3detection process significantly. Experimental results showed that this new PS-PMA nanofibers/QCM sensor exhibited excellent ammonia sensing performances, such as rapid response and good reproducibility. Moreover, the carboxyl content on the surface of PS-PMA membranes was also determined as well as the specific surface area in order to study the structure-properties relationships.


Sign in / Sign up

Export Citation Format

Share Document