scholarly journals Preparation of Mixed Semiconductors for Methyl Orange Degradation

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sangeeta Adhikari ◽  
Debasish Sarkar

Attempts were made to compare the photocatalytic efficacy in between quasi-fiber and near spherical commercial grade ZnO through the addition of monoclinic WO3nanocuboid. Mixed oxide semiconductors were assessed for their dye degradation performance under irradiation of visible light energy. Surface area and the particle morphology pattern have an influence on the resultant photocatalytic features of these mixed oxide composites. The high porous quasi-fibrous ZnO was successfully fabricated by a simple solution combustion method. It is deliberately made of clusters of primary near spherical particles that supports WO3nanocuboid embedment and shows interactive characteristics in comparison to the counterpart commercial near spherical ZnO combined with WO3. The photocatalytic activity significantly increases up to 95% under visible radiation for 90 min due to high surface area imparted by unique quasi-fiber morphology. The photogenerated electron-hole pair interaction mechanism has been proposed to support the photocatalytic behavior.

2018 ◽  
Vol 105 ◽  
pp. 26-30 ◽  
Author(s):  
Baohuai Zhao ◽  
Rui Ran ◽  
Li Sun ◽  
Zesheng Yang ◽  
Xiaodong Wu ◽  
...  

2018 ◽  
Vol 44 ◽  
pp. 00165 ◽  
Author(s):  
Karolina Sobczyk ◽  
Karol Leluk

Poly(lactic acid) electrospinning tests were carried out under various process conditions. Openwork structures with a high surface area to weight ratio have been obtained. Changing the parameters of the PLA electrospinning process resulted in products with different fiber morphology.


2004 ◽  
Vol 93-95 ◽  
pp. 671-674 ◽  
Author(s):  
Min Chen ◽  
Peizhuang Zhang ◽  
Xiaoming Zheng

ChemCatChem ◽  
2016 ◽  
Vol 8 (14) ◽  
pp. 2329-2334 ◽  
Author(s):  
Honggen Peng ◽  
Yang Liu ◽  
Yarong Li ◽  
Xianhua Zhang ◽  
Xianglan Tang ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 169 ◽  
Author(s):  
Faryal Idrees ◽  
Ralf Dillert ◽  
Detlef Bahnemann ◽  
Faheem Butt ◽  
Muhammad Tahir

This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3-dimensional Nb2O5/g-C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g-C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g-C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co-catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron-hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g-C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g-C3N4 over Nb2O5 as compared with that of g-C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron-hole pairs at the Nb2O5/g-C3N4 interface through a direct Z-scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Imarally V. de S. R. Nascimento ◽  
Willams T. Barbosa ◽  
Raúl G. Carrodeguas ◽  
Marcus V. L. Fook ◽  
Miguel A. Rodríguez

The objective of this work has been the synthesis of wollastonite by solution combustion method. The novelty of this work has been obtaining the crystalline phase without the need of thermal treatments after the synthesis. For this purpose, urea was used as fuel. Calcium nitrate was selected as a source of calcium and colloidal silica served as a source of silicon. The effect of the amount of fuel on the combustion process was investigated. Temperature of the combustion reaction was followed by digital pyrometry. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area. The results showed that the combustion synthesis provides nanostructured powders characterized by a high surface area. When excess of urea was used, wollastonite-2M was obtained with a submicronic structure.


Sign in / Sign up

Export Citation Format

Share Document