scholarly journals High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing

2018 ◽  
Vol 1 (3) ◽  
pp. 1212-1218 ◽  
Author(s):  
Evgeniy Shkondin ◽  
Taavi Repän ◽  
Mohammad Esmail Aryaee Panah ◽  
Andrei V. Lavrinenko ◽  
Osamu Takayama
Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


2012 ◽  
Vol 12 (6) ◽  
pp. 4919-4927 ◽  
Author(s):  
Nithi Atthi ◽  
Jakrapong Supadech ◽  
Gaetan Dupuy ◽  
On-uma Nimittrakoolchai ◽  
Apirak Pankiew ◽  
...  

2010 ◽  
Vol 25 (12) ◽  
pp. 2553-2558 ◽  
Author(s):  
M. Holgado ◽  
C.A. Barrios ◽  
F.J. Ortega ◽  
F.J. Sanza ◽  
R. Casquel ◽  
...  

2021 ◽  
Author(s):  
Yaxiong Zhang ◽  
Erqing Xie

Carbon nanotubes (CNTs) have been widely studied as supercapacitor electrodes because of their excellent conductivity, high aspect ratio, excellent mechanical properties, chemical stability, and large specific surface area. However, the...


Author(s):  
Rakshita Pritam Singh Dhar ◽  
Naveen Kumar ◽  
Cristina Medina-Bailon ◽  
Cesar Pascual Garcia ◽  
Vihar Petkov Georigiev

2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.


RSC Advances ◽  
2019 ◽  
Vol 9 (29) ◽  
pp. 16431-16438
Author(s):  
Kota Ito ◽  
Yuri Yamada ◽  
Atsushi Miura ◽  
Hideo Iizuka

High-aspect-ratio mushroom-like silica nanopillars fabricated from self-assembly of block-copolymers exhibit a uniaxial epsilon-near-zero response in the mid-infrared range.


Sign in / Sign up

Export Citation Format

Share Document