scholarly journals Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Ioannis Papagiannis ◽  
Nikolaos Balis ◽  
Vassilios Dracopoulos ◽  
Panagiotis Lianos

Photoelectrochemical production of hydrogen peroxide was studied by using a cell functioning with a WO3 photoanode and an air breathing cathode made of carbon cloth with a hydrophobic layer of carbon black. The photoanode functioned in the absence of any sacrificial agent by water splitting, but the produced photocurrent was doubled in the presence of glycerol or ethanol. Hydrogen peroxide production was monitored in all cases, mainly in the presence of glycerol. The presence or absence of the organic fuel affected only the obtained photocurrent. The Faradaic efficiency for hydrogen peroxide production was the same in all cases, mounting up to 74%. The duplication of the photocurrent in the presence of biomass derivatives such as glycerol or ethanol and the fact that WO3 absorbed light in a substantial range of the visible spectrum promotes the presently studied system as a sustainable source of hydrogen peroxide production.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4238 ◽  
Author(s):  
Tatiana Santos Andrade ◽  
Ioannis Papagiannis ◽  
Vassilios Dracopoulos ◽  
Márcio César Pereira ◽  
Panagiotis Lianos

Photoelectrochemical cells have been constructed with photoanodes based on mesoporous titania deposited on transparent electrodes and sensitized in the Visible by nanoparticulate CdS or CdS combined with CdSe. The cathode electrode was an air–breathing carbon cloth carrying nanoparticulate carbon. These cells functioned in the Photo Fuel Cell mode, i.e., without bias, simply by shining light on the photoanode. The cathode functionality was governed by a two-electron oxygen reduction, which led to formation of hydrogen peroxide. Thus, these devices were employed for photoelectrocatalytic hydrogen peroxide production. Two-compartment cells have been used, carrying different electrolytes in the photoanode and cathode compartments. Hydrogen peroxide production has been monitored by using various electrolytes in the cathode compartment. In the presence of NaHCO3, the Faradaic efficiency for hydrogen peroxide production exceeded 100% due to a catalytic effect induced by this electrolyte. Photocurrent has been generated by either a CdS/TiO2 or a CdSe/CdS/TiO2 combination, both functioning in the presence of sacrificial agents. Thus, in the first case ethanol was used as fuel, while in the second case a mixture of Na2S with Na2SO3 has been employed.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2454-2459
Author(s):  
Zhe Wang ◽  
Qin-Kun Li ◽  
Chenhao Zhang ◽  
Zhihua Cheng ◽  
Weiyin Chen ◽  
...  

Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444 ◽  
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

Abstract The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Quincy A. Hathaway ◽  
Nairrita Majumder ◽  
William T. Goldsmith ◽  
Amina Kunovac ◽  
Mark V. Pinti ◽  
...  

Abstract Background Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. Results Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (− 39.3% and − 36.2%, respectively) and IV (− 55.1% and − 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (− 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (− 25%) and translation of subunits, such as ATP5F1, following co-exposure. Conclusions CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.


Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. Z. J. Zaidi ◽  
Y. Luan ◽  
C. Harito ◽  
L. Utari ◽  
B. Yuliarto ◽  
...  

Abstract This paper reports the oxidation of Remazol black B dye by employing iron ions catalyst based gas diffusion cathodes, (GDCs). A GDC was synthesized by using a layer of carbon black and iron ions catalyst for oxygen reduction to hydrogen peroxide. The results demonstrated around 97% decolorization of Remazol black-B dye for 50 min by iron ions catalyst based GDC. The degradation study was performed under electrogenerated hydrogen peroxide at a constant voltage of − 0.6 V vs Hg/HgSO4 in which the rate of degradation was correlated with hydrogen peroxide production. Overall, the GDC’s found to be effective method to degrade the dyes via electro-Fenton.


2016 ◽  
Vol 14 (4) ◽  
pp. 843-850 ◽  
Author(s):  
Orlando García-Rodríguez ◽  
Jennifer A. Bañuelos ◽  
Arturo Rico-Zavala ◽  
Luis A. Godínez ◽  
Francisco J. Rodríguez-Valadez

Abstract The in-situ generation of hydrogen peroxide in the electro-Fenton process is paramount. For this reason, in this research the electrocatalytic activity of three carbon materials was evaluated in the reaction of oxygen reduction via two electrons. Furthermore, in order to eliminate the use of iron salts in solution (homogeneous process), the iron was electrodeposited on the surface of the carbon material and was applied in a heterogeneous electro-Fenton process for the degradation of methyl orange dye. The largest amount of generated H2O2 was achieved with the Carbon Felt (CF) electrode (460 mg L−1) without iron after 60 minutes. The electrodes with electrodeposited iron were characterized by SEM and EDS, which showed that the surface of the Carbon Sponge (CS) electrode had the largest amount of iron (23.84 %). However, the CF electrode showed a greater and faster degradation of the dye (98 %) after 30 minutes of treatment. The CF material was the best and most-viable choice of material compared to the CS and Carbon Cloth (CC) for industrial application in electro-Fenton processes, due to its greater catalytic activity in the production of H2O2, uniform distribution of iron, more efficient TOC removal and lower cost per cm2 of material.


ChemSusChem ◽  
2018 ◽  
Vol 11 (19) ◽  
pp. 3388-3395 ◽  
Author(s):  
Yanyan Sun ◽  
Shuang Li ◽  
Zarko Petar Jovanov ◽  
Denis Bernsmeier ◽  
Huan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document