Hydrogen Adsorption at the Au/TiO2 Interface: Quantitative Determination and Spectroscopic Signature of the Reactive Interface Hydroxyl Groups at the Active Site

ACS Catalysis ◽  
2021 ◽  
pp. 15194-15202
Author(s):  
Akbar Mahdavi-Shakib ◽  
Lauren C. Rich ◽  
Todd N. Whittaker ◽  
Bert D. Chandler
2018 ◽  
Vol 20 (32) ◽  
pp. 21194-21203 ◽  
Author(s):  
Nuttapon Yodsin ◽  
Chompoonut Rungnim ◽  
Vinich Promarak ◽  
Supawadee Namuangruk ◽  
Nawee Kungwan ◽  
...  

The hydrogen adsorption on platinum (Pt)-decorated carbon nanocenes (CNCs) are investigated by DFT calculations. The Pt is an active site for hydrogen adsorption while curvature of CNC enhances hydrogen uptake via hydrogen migration/diffusion on the C–C surface.


2004 ◽  
Vol 82 (5) ◽  
pp. 531-537 ◽  
Author(s):  
Jack Kornblatt ◽  
Ingrid Muzac ◽  
Yoongho Lim ◽  
Joong Hoon Ahn ◽  
Ragai K Ibrahim

O-Methyltransferases catalyze the transfer of the methyl groups of S-adenosyl-L-methionine to specific hydroxyl groups of several classes of flavonoid compounds. Of the several cDNA clones isolated from a Chrysosplenium americanum library, FOMT3′ encodes the 3′/5′-O-methylation of partially methylated flavonols. The recombinant protein of another clone, FOMTx which differs from FOMT3′ by a single amino acid residue (Ser286Arg) exhibits no enzymatic activity towards any of the flavonoid substrates tested. Replacement of Ser 286 in FOMT3′ with either Ala, Leu, Lys or Thr, almost abolished O-methyltransferase activity. In contrast with FOMT3′, no photoaffinity labeling could be achieved using [14CH3]AdoMet with the mutant recombinant proteins indicating that Ser 286 is also required for cosubstrate binding. These results are corroborated by isothermal titration microcalorimetry measurements. Circular dichroism spectra ruled out any significant conformational differences in the secondary structures of both FOMT3′ and Ser286Arg. Modeling FOMT3′ on the structure of chalcone methyltransferase indicates that serine 286 is greater than 10 Å from any of the residues of the active site or the AdoMet binding site of FOMT3′. At the same time, residues 282 to 290 are conserved in most of the Chrysosplenium americanum OMTs. These residues form a large part of the subunit interface, and at least five of these residues are within 4 Å of the opposing subunit. It would appear, therefore, that mutations in Ser286 exert their influence by altering the contacts between the subunits and that these contacts are necessary for maintaining the integrety of the AdoMet binding site and active site of this group of enzymes. Key words: flavonoids, O-methyltransferase, photoaffinity labeling.


2008 ◽  
Vol 105 (46) ◽  
pp. 17748-17753 ◽  
Author(s):  
Anand Minajigi ◽  
Christopher S. Francklyn

Aminoacyl-tRNA synthetases (aaRSs) join amino acids to 1 of 2 terminal hydroxyl groups of their cognate tRNAs, thereby contributing to the overall fidelity of protein synthesis. In class II histidyl-tRNA synthetase (HisRS) the nonbridging Sp-oxygen of the adenylate is a potential general base for aminoacyl transfer. To test for conservation of this mechanism in other aaRSs and the role of terminal hydroxyls of tRNA in aminoacyl transfer, we investigated the class II Escherichia coli threonyl-tRNA synthetase (ThrRS). As with other class II aaRSs, the rate-determining step for ThrRS is amino acid activation. In ThrRS, however, the 2′-OH of A76 of tRNAThr and a conserved active-site histidine (His-309) collaborate to catalyze aminoacyl transfer by a mechanism distinct from HisRS. Conserved residues in the ThrRS active site were replaced with alanine, and then the resulting mutant proteins were analyzed by steady-state and rapid kinetics. Nearly all mutants preferentially affected the amino acid activation step, with only a modest effect on aminoacyl transfer. By contrast, H309A ThrRS decreased transfer 242-fold and imposed a kinetic block to CCA accommodation. His-309 hydrogen bonds to the 2′-OH of A76, and substitution of the latter by hydrogen or fluorine decreased aminoacyl transfer by 763- and 94-fold, respectively. The proton relay mechanism suggested by these data to promote aminoacylation is reminiscent of the NAD+-dependent mechanisms of alcohol dehydrogenases and sirtuins and the RNA-mediated catalysis of the ribosomal peptidyl transferase center.


2006 ◽  
Vol 39 (3) ◽  
pp. 203-225 ◽  
Author(s):  
Marina V. Rodnina ◽  
Malte Beringer ◽  
Wolfgang Wintermeyer

1. The ribosome 2042. Peptide bond formation is catalyzed by RNA 2053. Characteristics of the uncatalyzed reaction 2074. Potential catalytic strategies of the ribosome 2075. Experimental systems 2086. Substrate binding in the PT center 2107. Induced fit in the active site 2118. pH dependence of peptide bond formation 2129. Reaction with full-length aa-tRNA 21410. Role of active-site residues 21511. pH-dependent structural changes of the active site 21612. Entropic catalysis 21713. Role of 2′-OH of A76 in P-site tRNA 21814. Catalysis by proton shuttling 21915. Plasticity of the active site 22016. Conclusions 22117. Acknowledgments 22218. References 222Peptide bond formation is the fundamental reaction of ribosomal protein synthesis. The ribosome's active site – the peptidyl transferase center – is composed of rRNA, and thus the ribosome is the largest known RNA catalyst. The ribosome accelerates peptide bond formation by 107-fold relative to the uncatalyzed reaction. Recent progress of structural, biochemical and computational approaches has provided a fairly detailed picture of the catalytic mechanisms employed by the ribosome. Energetically, catalysis is entirely entropic, indicating an important role of solvent reorganization, substrate positioning, and/or orientation of the reacting groups within the active site. The ribosome provides a pre-organized network of electrostatic interactions that stabilize the transition state and facilitate proton shuttling involving ribose hydroxyl groups of tRNA. The catalytic mechanism employed by the ribosome suggests how ancient RNA-world enzymes may have functioned.


Sign in / Sign up

Export Citation Format

Share Document