scholarly journals Role of Serine 286 in cosubstrate binding and catalysis of a flavonol O-methyltransferase

2004 ◽  
Vol 82 (5) ◽  
pp. 531-537 ◽  
Author(s):  
Jack Kornblatt ◽  
Ingrid Muzac ◽  
Yoongho Lim ◽  
Joong Hoon Ahn ◽  
Ragai K Ibrahim

O-Methyltransferases catalyze the transfer of the methyl groups of S-adenosyl-L-methionine to specific hydroxyl groups of several classes of flavonoid compounds. Of the several cDNA clones isolated from a Chrysosplenium americanum library, FOMT3′ encodes the 3′/5′-O-methylation of partially methylated flavonols. The recombinant protein of another clone, FOMTx which differs from FOMT3′ by a single amino acid residue (Ser286Arg) exhibits no enzymatic activity towards any of the flavonoid substrates tested. Replacement of Ser 286 in FOMT3′ with either Ala, Leu, Lys or Thr, almost abolished O-methyltransferase activity. In contrast with FOMT3′, no photoaffinity labeling could be achieved using [14CH3]AdoMet with the mutant recombinant proteins indicating that Ser 286 is also required for cosubstrate binding. These results are corroborated by isothermal titration microcalorimetry measurements. Circular dichroism spectra ruled out any significant conformational differences in the secondary structures of both FOMT3′ and Ser286Arg. Modeling FOMT3′ on the structure of chalcone methyltransferase indicates that serine 286 is greater than 10 Å from any of the residues of the active site or the AdoMet binding site of FOMT3′. At the same time, residues 282 to 290 are conserved in most of the Chrysosplenium americanum OMTs. These residues form a large part of the subunit interface, and at least five of these residues are within 4 Å of the opposing subunit. It would appear, therefore, that mutations in Ser286 exert their influence by altering the contacts between the subunits and that these contacts are necessary for maintaining the integrety of the AdoMet binding site and active site of this group of enzymes. Key words: flavonoids, O-methyltransferase, photoaffinity labeling.

2013 ◽  
Vol 288 (23) ◽  
pp. 17008-17018 ◽  
Author(s):  
D. Fernando Estrada ◽  
Jennifer S. Laurence ◽  
Emily E. Scott

The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Here the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bifunctional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction that is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicates that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (Glu-48 or Glu-49) or the corresponding cationic CYP17A1 residues (Arg-347, Arg-358, or Arg-449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase. To probe the differential effects of b5 on the two CYP17A1-mediated reactions and, thus, communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site.


2018 ◽  
Vol 475 (6) ◽  
pp. 1141-1158 ◽  
Author(s):  
Erika Artukka ◽  
Heidi H. Luoto ◽  
Alexander A. Baykov ◽  
Reijo Lahti ◽  
Anssi M. Malinen

Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4–7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.


2007 ◽  
Vol 282 (38) ◽  
pp. 28157-28163 ◽  
Author(s):  
Karin Valmsen ◽  
William E. Boeglin ◽  
Reet Järving ◽  
Ivar Järving ◽  
Külliki Varvas ◽  
...  

The correct stereochemistry of prostaglandins is a prerequisite of their biological activity and thus is under a strict enzymatic control. Recently, we cloned and characterized two cyclooxygenase (COX) isoforms in the coral Plexaura homomalla that share 97% amino acid sequence identity, yet form prostaglandins with opposite stereochemistry at carbon 15. The difference in oxygenation specificity is only partially accounted for by the single amino acid substitution in the active site (Ile or Val at position 349). For further elucidation of residues involved in the C-15 stereocontrol, a series of sequence swapping and site-directed mutagenesis experiments between 15R- and 15S-COX were performed. Our results show that the change in stereochemistry at carbon 15 of prostaglandins relates mainly to five amino acid substitutions on helices 5 and 6 of the coral COX. In COX proteins, these helices form a helix-turn-helix motif that traverses through the entire protein, contributing to the second shell of residues around the oxygenase active site; it constitutes the most highly conserved region where even slight changes result in loss of catalytic activity. The finding that this region is among the least conserved between the P. homomalla 15S- and 15R-specific COX further supports its significance in maintaining the desired prostaglandin stereochemistry at C-15. The results are particularly remarkable because, based on its strong conservation, the conserved middle of helix 5 is considered as central to the core structure of peroxidases, of which COX proteins are derivatives. Now we show that the same parts of the protein are involved in the control of oxygenation with 15R or 15S stereospecificity in the dioxygenase active site.


2011 ◽  
Vol 77 (16) ◽  
pp. 5730-5738 ◽  
Author(s):  
Hanna M. Dudek ◽  
Gonzalo de Gonzalo ◽  
Daniel E. Torres Pazmiño ◽  
Piotr Stępniak ◽  
Lucjan S. Wyrwicz ◽  
...  

ABSTRACTBaeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) fromThermobifida fuscais the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.


2006 ◽  
Vol 39 (3) ◽  
pp. 203-225 ◽  
Author(s):  
Marina V. Rodnina ◽  
Malte Beringer ◽  
Wolfgang Wintermeyer

1. The ribosome 2042. Peptide bond formation is catalyzed by RNA 2053. Characteristics of the uncatalyzed reaction 2074. Potential catalytic strategies of the ribosome 2075. Experimental systems 2086. Substrate binding in the PT center 2107. Induced fit in the active site 2118. pH dependence of peptide bond formation 2129. Reaction with full-length aa-tRNA 21410. Role of active-site residues 21511. pH-dependent structural changes of the active site 21612. Entropic catalysis 21713. Role of 2′-OH of A76 in P-site tRNA 21814. Catalysis by proton shuttling 21915. Plasticity of the active site 22016. Conclusions 22117. Acknowledgments 22218. References 222Peptide bond formation is the fundamental reaction of ribosomal protein synthesis. The ribosome's active site – the peptidyl transferase center – is composed of rRNA, and thus the ribosome is the largest known RNA catalyst. The ribosome accelerates peptide bond formation by 107-fold relative to the uncatalyzed reaction. Recent progress of structural, biochemical and computational approaches has provided a fairly detailed picture of the catalytic mechanisms employed by the ribosome. Energetically, catalysis is entirely entropic, indicating an important role of solvent reorganization, substrate positioning, and/or orientation of the reacting groups within the active site. The ribosome provides a pre-organized network of electrostatic interactions that stabilize the transition state and facilitate proton shuttling involving ribose hydroxyl groups of tRNA. The catalytic mechanism employed by the ribosome suggests how ancient RNA-world enzymes may have functioned.


1990 ◽  
Vol 96 (4) ◽  
pp. 689-706 ◽  
Author(s):  
D S Krafte ◽  
A L Goldin ◽  
V J Auld ◽  
R J Dunn ◽  
N Davidson ◽  
...  

This study investigates the inactivation properties of Na channels expressed in Xenopus oocytes from two rat IIA Na channel cDNA clones differing by a single amino acid residue. Although the two cDNAs encode Na channels with substantially different activation properties (Auld, V. J., A. L. Goldin, D. S. Krafte, J. Marshall, J. M. Dunn, W. A. Catterall, H. A. Lester, N. Davidson, and R. J. Dunn. 1988. Neuron. 1:449-461), their inactivation properties resemble each other strongly but differ markedly from channels induced by poly(A+) rat brain RNA. Rat IIA currents inactivate more slowly, recover from inactivation more slowly, and display a steady-state voltage dependence that is shifted to more positive potentials. The macroscopic inactivation process for poly(A+) Na channels is defined by a single exponential time course; that for rat IIA channels displays two exponential components. At the single-channel level these differences in inactivation occur because rat IIA channels reopen several times during a depolarizing pulse; poly(A+) channels do not. Repetitive stimulation (greater than 1 Hz) produces a marked decrement in the rat IIA peak current and changes the waveform of the currents. When low molecular weight RNA is coinjected with rat IIA RNA, these inactivation properties are restored to those that characterize poly(A+) channels. Slow inactivation is similar for rat IIA and poly(A+) channels, however. The data suggest that activation and inactivation involve at least partially distinct regions of the channel protein.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 843-847
Author(s):  
Dessislava Nikolova Georgieva ◽  
Stanka Stoeva ◽  
Wolfgang Voelter ◽  
Nicolay Genov

Abstract The active site of Viviparus ater (mollusc) hemocyanin was investigated using the fact that the binding of dioxygen to the binuclear copper-containing sites of hemocyanins is connected with the appearance of specific dichroic bands which are very sensitive to changes in the structrure and polarity of the environment. Oxy-Viviparus ater hemocyanin exhibits near UV and visible circular dichroism spectra different from those of other molluscan and arthropo-dan hemocyanins. These differences are due probably to variations in the geometry or charge distribution in the dioxygen binding sites of the compared proteins.The thermostability of Viviparus ater hemocyanin and the significance of the copper-dioxy-gen system for the stability were also investigated. “Melting” temperatures, Tm, of 77 °C for the oxy-hemocyanin and 57 °C for the apo-protein were calculated from the denaturation curves which demonstrates the considerable role of the binuclear active site for the thermostability. Viviparus ater hemocyanin is more thermostable than other hemocyanins for which data are published.


2020 ◽  
Vol 295 (33) ◽  
pp. 11495-11512 ◽  
Author(s):  
Selwyn S. Jayakar ◽  
David C. Chiara ◽  
Xiaojuan Zhou ◽  
Bo Wu ◽  
Karol S. Bruzik ◽  
...  

Allopregnanolone (3α5α-P), pregnanolone, and their synthetic derivatives are potent positive allosteric modulators (PAMs) of GABAA receptors (GABAARs) with in vivo anesthetic, anxiolytic, and anti-convulsant effects. Mutational analysis, photoaffinity labeling, and structural studies have provided evidence for intersubunit and intrasubunit steroid-binding sites in the GABAAR transmembrane domain, but revealed only little definition of their binding properties. Here, we identified steroid-binding sites in purified human α1β3 and α1β3γ2 GABAARs by photoaffinity labeling with [3H]21-[4-(3-(trifluoromethyl)-3H-diazirine-3-yl)benzoxy]allopregnanolone ([3H]21-pTFDBzox-AP), a potent GABAAR PAM. Protein microsequencing established 3α5α-P inhibitable photolabeling of amino acids near the cytoplasmic end of the β subunit M4 (β3Pro-415, β3Leu-417, and β3Thr-418) and M3 (β3Arg-309) helices located at the base of a pocket in the β+–α− subunit interface that extends to the level of αGln-242, a steroid sensitivity determinant in the αM1 helix. Competition photolabeling established that this site binds with high affinity a structurally diverse group of 3α-OH steroids that act as anesthetics, anti-epileptics, and anti-depressants. The presence of a 3α-OH was crucial: 3-acetylated, 3-deoxy, and 3-oxo analogs of 3α5α-P, as well as 3β-OH analogs that are GABAAR antagonists, bound with at least 1000-fold lower affinity than 3α5α-P. Similarly, for GABAAR PAMs with the C-20 carbonyl of 3α5α-P or pregnanolone reduced to a hydroxyl, binding affinity is reduced by 1,000-fold, whereas binding is retained after deoxygenation at the C-20 position. These results provide a first insight into the structure-activity relationship at the GABAAR β+–α− subunit interface steroid-binding site and identify several steroid PAMs that act via other sites.


2005 ◽  
Vol 187 (7) ◽  
pp. 2483-2490 ◽  
Author(s):  
Xuesong Dong ◽  
Shinya Fushinobu ◽  
Eriko Fukuda ◽  
Tohru Terada ◽  
Shugo Nakamura ◽  
...  

ABSTRACT The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 Å by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.


Sign in / Sign up

Export Citation Format

Share Document