Quantitative Two-Dimensional (2D) Morphology–Selectivity Relationship of CoMoS Nanolayers: A Combined High-Resolution High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HR HAADF-STEM) and Density Functional Theory (DFT) Study

ACS Catalysis ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 1081-1092 ◽  
Author(s):  
Bertrand Baubet ◽  
Maria Girleanu ◽  
Anne-Sophie Gay ◽  
Anne-Lise Taleb ◽  
Maxime Moreaud ◽  
...  
2015 ◽  
Vol 17 (12) ◽  
pp. 7898-7906 ◽  
Author(s):  
Orlando Miramontes ◽  
Franco Bonafé ◽  
Ulises Santiago ◽  
Eduardo Larios-Rodriguez ◽  
Jesús J. Velázquez-Salazar ◽  
...  

In this work, the adsorption of very small rhenium clusters (2–13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) in combination with density functional theory calculations.


2020 ◽  
Author(s):  
Xie Hongbo ◽  
Junyuan Bai ◽  
Haiyan Ren ◽  
Shanshan Li ◽  
Hucheng Pan ◽  
...  

Abstract Z phase is one of the three basic units by which the Frank-Kasper phases are generally assembled. Compared to the other two basic units, i.e., A15 and C15 structures, the Z phase structure is rarely experimentally observed because of a relatively large volume ratio among the constituents to inhibit its formation. Moreover, the discovered Z structures are generally the three-dimensional (3D) ordered Gibbs bulk phases to conform to their thermodynamic stability. Herein, we confirmed the existence of a metastable two-dimensional (2D) Frank-Kasper Z phase with one unit-cell height in the crystallography in a model Mg-Sm-Zn system, by using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with density functional theory (DFT) calculations. This finding is important for understanding the relationship between the traditional crystal structures and the quasicrystals, and it is also expected to provide a new insight to understand the clustering and stacking behavior of atoms in condensed matters.


Sign in / Sign up

Export Citation Format

Share Document