Pharmacological Characterization of [3H]ATPCA as a Substrate for Studying the Functional Role of the Betaine/GABA Transporter 1 and the Creatine Transporter

2017 ◽  
Vol 9 (3) ◽  
pp. 545-554 ◽  
Author(s):  
Anas Al-Khawaja ◽  
Anne S. Haugaard ◽  
Ales Marek ◽  
Rebekka Löffler ◽  
Louise Thiesen ◽  
...  
2020 ◽  
Vol 45 (7) ◽  
pp. 1551-1565
Author(s):  
Maria E. K. Lie ◽  
Stefanie Kickinger ◽  
Jonas Skovgaard-Petersen ◽  
Gerhard F. Ecker ◽  
Rasmus P. Clausen ◽  
...  

Biochemistry ◽  
2007 ◽  
Vol 46 (43) ◽  
pp. 12152-12163 ◽  
Author(s):  
Izhack Cherny ◽  
Martin Overgaard ◽  
Jonas Borch ◽  
Yaron Bram ◽  
Kenn Gerdes ◽  
...  

2020 ◽  
Vol 222 ◽  
pp. 02050
Author(s):  
Marat Lutfulin ◽  
Darya Zaripova ◽  
Oksana Moiseeva ◽  
Semen Vologin ◽  
Ayslu Mardanova

Identification of patterns of formation of bacterial communities of the rhizosphere and rhizoplane of potato (Solanum tuberosum L.), the most important agricultural crop, is necessary for the introduction and maintenance of sustainable organic farming. The purpose of this work was the study of the biodiversity of the bacterial microbiota of the rhizosphere and rhizoplane of Early Zhukovsky potato, cultivated on gray forest soils. Comparative analysis based on sequencing of the 16S R RNA gene showed a significant difference in the representation of different groups of bacteria in these potato root compartments. Thus, the proportions of the dominant bacteria in the rhizosphere and rhizoplane of the Proteobacteria phylum reach 47.66% ± 7.22 % and 86.35 % ± 0.53%, respectively (P < 0.05). In contrast, the representation of phylum Bacteroidetes and Firmicutes in the rhizosphere is significantly higher and reaches 41.45 % ± 10.42% and 6.49 % ± 3.23%, respectively, compared to the rhizoplane (7.84 % ± 1.24 % and 0.43 % ± 0.48 %, (P < 0.05). At the same time, Actinobacteria phylum bacteria are present in both compartments in approximately equal amounts (4.40 % ± 1.81% in the rhizosphere and 5.37 % ± 1.42% in the rhizoplane). Thus, it was found that potato forms different bacterial communities in the rhizosphere and rhizoplane in quantitative proportions, which is probably determined by the functional role of these microorganisms in the plant physiology.


2019 ◽  
Vol 11 (10) ◽  
pp. 2876 ◽  
Author(s):  
Alessandra Durazzo

This special issue, “The Close Linkage between Nutrition and Environment through Biodiversity and Sustainability: Local Foods, Traditional Recipes, and Sustainable Diets” is focused on the close correlation between the potential benefits and “functional role” of a food and the territory, including papers on the characterization of local foods and traditional recipes, on the promotion of traditional dietary patterns and sustainable diets.


2008 ◽  
Vol 9 (2) ◽  
pp. 242-251 ◽  
Author(s):  
Wei-Yuan Chou ◽  
Hwei-Ping Chang ◽  
Chien-Hsiun Huang ◽  
Cheng-Chin Kuo ◽  
Gu-Gang Chang ◽  
...  

2015 ◽  
Vol 112 (50) ◽  
pp. E6844-E6851 ◽  
Author(s):  
Grace Caldara-Festin ◽  
David R. Jackson ◽  
Jesus F. Barajas ◽  
Timothy R. Valentic ◽  
Avinash B. Patel ◽  
...  

Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.


Nematology ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 697-709 ◽  
Author(s):  
Margarida Espada ◽  
John T. Jones ◽  
Manuel Mota

We have previously identified two secreted glutathione S-transferases (GST) expressed in the pharyngeal gland cell of Bursaphelenchus xylophilus, which are upregulated post infection of the host. This study examines the functional role of GSTs in B. xylophilus biology. We analysed the expression profiles of all predicted GSTs in the genome and the results showed that they belong to kappa and cytosolic subfamilies and the majority are upregulated post infection of the host. A small percentage is potentially secreted and none is downregulated post infection of the host. One secreted protein was confirmed as a functional GST and is within a cluster that showed the highest expression fold change in infection. This enzyme has a protective activity that may involve host defences, namely in the presence of terpenoid compounds and peroxide products. These results suggest that GSTs secreted into the host participate in the detoxification of host-derived defence compounds and enable successful parasitism.


Sign in / Sign up

Export Citation Format

Share Document