scholarly journals Characterization of glutathione S-transferases from the pine wood nematode, Bursaphelenchus xylophilus

Nematology ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 697-709 ◽  
Author(s):  
Margarida Espada ◽  
John T. Jones ◽  
Manuel Mota

We have previously identified two secreted glutathione S-transferases (GST) expressed in the pharyngeal gland cell of Bursaphelenchus xylophilus, which are upregulated post infection of the host. This study examines the functional role of GSTs in B. xylophilus biology. We analysed the expression profiles of all predicted GSTs in the genome and the results showed that they belong to kappa and cytosolic subfamilies and the majority are upregulated post infection of the host. A small percentage is potentially secreted and none is downregulated post infection of the host. One secreted protein was confirmed as a functional GST and is within a cluster that showed the highest expression fold change in infection. This enzyme has a protective activity that may involve host defences, namely in the presence of terpenoid compounds and peroxide products. These results suggest that GSTs secreted into the host participate in the detoxification of host-derived defence compounds and enable successful parasitism.

Biochemistry ◽  
2007 ◽  
Vol 46 (43) ◽  
pp. 12152-12163 ◽  
Author(s):  
Izhack Cherny ◽  
Martin Overgaard ◽  
Jonas Borch ◽  
Yaron Bram ◽  
Kenn Gerdes ◽  
...  

2020 ◽  
Vol 222 ◽  
pp. 02050
Author(s):  
Marat Lutfulin ◽  
Darya Zaripova ◽  
Oksana Moiseeva ◽  
Semen Vologin ◽  
Ayslu Mardanova

Identification of patterns of formation of bacterial communities of the rhizosphere and rhizoplane of potato (Solanum tuberosum L.), the most important agricultural crop, is necessary for the introduction and maintenance of sustainable organic farming. The purpose of this work was the study of the biodiversity of the bacterial microbiota of the rhizosphere and rhizoplane of Early Zhukovsky potato, cultivated on gray forest soils. Comparative analysis based on sequencing of the 16S R RNA gene showed a significant difference in the representation of different groups of bacteria in these potato root compartments. Thus, the proportions of the dominant bacteria in the rhizosphere and rhizoplane of the Proteobacteria phylum reach 47.66% ± 7.22 % and 86.35 % ± 0.53%, respectively (P < 0.05). In contrast, the representation of phylum Bacteroidetes and Firmicutes in the rhizosphere is significantly higher and reaches 41.45 % ± 10.42% and 6.49 % ± 3.23%, respectively, compared to the rhizoplane (7.84 % ± 1.24 % and 0.43 % ± 0.48 %, (P < 0.05). At the same time, Actinobacteria phylum bacteria are present in both compartments in approximately equal amounts (4.40 % ± 1.81% in the rhizosphere and 5.37 % ± 1.42% in the rhizoplane). Thus, it was found that potato forms different bacterial communities in the rhizosphere and rhizoplane in quantitative proportions, which is probably determined by the functional role of these microorganisms in the plant physiology.


2019 ◽  
Vol 11 (10) ◽  
pp. 2876 ◽  
Author(s):  
Alessandra Durazzo

This special issue, “The Close Linkage between Nutrition and Environment through Biodiversity and Sustainability: Local Foods, Traditional Recipes, and Sustainable Diets” is focused on the close correlation between the potential benefits and “functional role” of a food and the territory, including papers on the characterization of local foods and traditional recipes, on the promotion of traditional dietary patterns and sustainable diets.


2008 ◽  
Vol 9 (2) ◽  
pp. 242-251 ◽  
Author(s):  
Wei-Yuan Chou ◽  
Hwei-Ping Chang ◽  
Chien-Hsiun Huang ◽  
Cheng-Chin Kuo ◽  
Gu-Gang Chang ◽  
...  

2015 ◽  
Vol 112 (50) ◽  
pp. E6844-E6851 ◽  
Author(s):  
Grace Caldara-Festin ◽  
David R. Jackson ◽  
Jesus F. Barajas ◽  
Timothy R. Valentic ◽  
Avinash B. Patel ◽  
...  

Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-β-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7–C12 and C9–C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7–C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: “nonreducing” ARO/CYCs, which act on nonreduced poly-β-ketones, and “reducing” ARO/CYCs, which act on cyclized C9 reduced poly-β-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2261
Author(s):  
Nidhi Gupta ◽  
Abhishek Kanojia ◽  
Arpana Katiyar ◽  
Yashwanti Mudgil

Salt stress is considered to be the most severe abiotic stress. High soil salinity leads to osmotic and ionic toxicity, resulting in reduced plant growth and crop production. The role of G-proteins during salt stresses is well established. AGB1, a G-protein subunit, not only plays an important role during regulation of Na+ fluxes in roots, but is also involved in the translocation of Na+ from roots to shoots. N-Myc Downregulated like 1 (NDL1) is an interacting partner of G protein βγ subunits and C-4 domain of RGS1 in Arabidopsis. Our recent in-planta expression analysis of NDL1 reported changes in patterns during salt stress. Based on these expression profiles, we have carried out functional characterization of the AGB1-NDL1 module during salinity stress. Using various available mutant and overexpression lines of NDL1 and AGB1, we found that NDL1 acts as a negative regulator during salt stress response at the seedling stage, an opposite response to that of AGB1. On the other hand, during the germination phase of the plant, this role is reversed, indicating developmental and tissue specific regulation. To elucidate the mechanism of the AGB1-NDL1 module, we investigated the possible role of the three NDL1 stress specific interactors, namely ANNAT1, SLT1, and IDH-V, using yeast as a model. The present study revealed that NDL1 acts as a modulator of salt stress response, wherein it can have both positive as well as negative functions during salinity stress. Our findings suggest that the NDL1 mediated stress response depends on its developmental stage-specific expression patterns as well as the differential presence and interaction of the stress-specific interactors.


Sign in / Sign up

Export Citation Format

Share Document