Freshwater Mussel Soft Tissue Incorporates Strontium Isotopic Signatures of Oil and Gas Produced Water

2021 ◽  
Author(s):  
Bonnie McDevitt ◽  
Thomas J. Geeza ◽  
David P. Gillikin ◽  
Nathaniel R. Warner
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paulina K. Piotrowski ◽  
Travis L. Tasker ◽  
Thomas J. Geeza ◽  
Bonnie McDevitt ◽  
David P. Gillikin ◽  
...  

Abstract Hydraulic fracturing is often criticized due in part to the potential degradation of ground and surface water quality by high-salinity produced water generated during well stimulation and production. This preliminary study evaluated the response of the freshwater mussel, Elliptio complanata, after exposure to produced water. A limited number of adult mussels were grown over an 8-week period in tanks dosed with produced water collected from a hydraulically fractured well. The fatty tissue and carbonate shells were assessed for accumulation of both inorganic and organic pollutants. Ba, Sr, and cyclic hydrocarbons indicated the potential to accumulate in the soft tissue of freshwater mussels following exposure to diluted oil and gas produced water. Exposed mussels showed accumulation of Ba in the soft tissue several hundred times above background water concentrations and increased concentrations of Sr. Cyclic hydrocarbons were detected in dosed mussels and principle component analysis of gas chromatograph time-of-flight mass spectrometer results could be a novel tool to help identify areas where aquatic organisms are impacted by oil and gas produced water, but larger studies with greater replication are necessary to confirm these results.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

2019 ◽  
Author(s):  
Brian W. Stewart ◽  
◽  
Zachary G. Tieman ◽  
Rosemary C. Capo ◽  
Rebecca M. Matecha ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 129550
Author(s):  
Faraaz Ahmad ◽  
Katherine Morris ◽  
Gareth T.W. Law ◽  
Kevin Taylor ◽  
Samuel Shaw

2021 ◽  
Vol 775 ◽  
pp. 145485
Author(s):  
Yiqian Liu ◽  
Hao Lu ◽  
Yudong Li ◽  
Hong Xu ◽  
Zhicheng Pan ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1183
Author(s):  
Ashiqur Rahman ◽  
Shanglei Pan ◽  
Cymone Houston ◽  
Thinesh Selvaratnam

Produced water (PW) is the largest waste stream generated by the oil and gas industry. Traditional treatment of PW burdens the industry with significant expenses and environmental issues. Alternatively, microalgal-based bioremediation of PW is often viewed as an ecologically safe and sustainable platform for treating PW. Moreover, the nutrients in PW could support algal growth. However, significant dilution of PW is often required in algal-based systems due to the presence of complex chemical contaminants. In light of these facts, the current work has investigated the potential of cultivating Galdieria sulphuraria and Chlorella vulgaris in PW using multiple dilutions; 0% PW, 5% PW, 10% PW, 20% PW, 50% PW and 100% PW. While both algal strains can grow in PW, the current results indicated that G. sulphuraria has a higher potential of growth in up to 50% PW (total dissolved solids of up to 55 g L−1) with a growth rate of 0.72 ± 0.05 g L−1 d−1 and can achieve a final biomass density of 4.28 ± 0.16 g L−1 in seven days without the need for additional micronutrients. Additionally, the algae showed the potential of removing 99.6 ± 0.2% nitrogen and 74.2 ± 8.5% phosphorus from the PW.


Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-239
Author(s):  
Saeed P. Langarudi ◽  
Robert P. Sabie ◽  
Babak Bahaddin ◽  
Alexander G. Fernald

This paper explores the possibility and plausibility of developing a hybrid simulation method combining agent-based (AB) and system dynamics (SD) modeling to address the case study of produced water management (PWM). In southeastern New Mexico, the oil and gas industry generates large volumes of produced water, while at the same time, freshwater resources are scarce. Single-method models are unable to capture the dynamic impacts of PWM on the water budget at both the local and regional levels, hence the need for a more complex hybrid approach. We used the literature, information characterizing produced water in New Mexico, and our preliminary interviews with subject matter experts to develop this framework. We then conducted a systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and techniques. Our research revealed that there is a small but growing volume of hybrid modeling research that could provide some foundational support for modelers interested in hybrid modeling approaches for complex natural resource management issues. We categorized these efforts into four classes based on their approaches to hybrid modeling. It appears that, among these classes, PWM requires the most sophisticated approach, indicating that PWM modelers will need to face serious challenges and break new ground in this realm.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


Sign in / Sign up

Export Citation Format

Share Document