scholarly journals Molecular Modeling Combined with Advanced Chemistry for the Rational Design of Efficient Graphene Dispersing Agents

2015 ◽  
Vol 5 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Konstantinia D. Papadimitriou ◽  
Emmanuel N. Skountzos ◽  
Sandra S. Gkermpoura ◽  
Ioannis Polyzos ◽  
Vlasis G. Mavrantzas ◽  
...  
2013 ◽  
Vol 8 (4) ◽  
pp. 452-464 ◽  
Author(s):  
Alejandro Speck-Planche ◽  
Valeria Kleandrova ◽  
Marcus Scotti ◽  
M. Cordeiro

2012 ◽  
Vol 48 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Sibila Roberta Marques Grallert ◽  
Carlota de Oliveira Rangel-Yagui ◽  
Kerly Fernanda Mesquita Pasqualoto ◽  
Leoberto Costa Tavares

Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.


2019 ◽  
Vol 21 (1) ◽  
pp. 214
Author(s):  
Yuliya V. Sherstyuk ◽  
Nikita V. Ivanisenko ◽  
Alexandra L. Zakharenko ◽  
Maria V. Sukhanova ◽  
Roman Y. Peshkov ◽  
...  

We report on the design, synthesis and molecular modeling study of conjugates of adenosine diphosphate (ADP) and morpholino nucleosides as potential selective inhibitors of poly(ADP-ribose)polymerases-1, 2 and 3. Sixteen dinucleoside pyrophosphates containing natural heterocyclic bases as well as 5-haloganeted pyrimidines, and mimicking a main substrate of these enzymes, nicotinamide adenine dinucleotide (NAD+)-molecule, have been synthesized in a high yield. Morpholino nucleosides have been tethered to the β-phosphate of ADP via a phosphoester or phosphoramide bond. Screening of the inhibiting properties of these derivatives on the autopoly(ADP-ribosyl)ation of PARP-1 and PARP-2 has shown that the effect depends upon the type of nucleobase as well as on the linkage between ADP and morpholino nucleoside. The 5-iodination of uracil and the introduction of the P–N bond in NAD+-mimetics have shown to increase inhibition properties. Structural modeling suggested that the P–N bond can stabilize the pyrophosphate group in active conformation due to the formation of an intramolecular hydrogen bond. The most active NAD+ analog against PARP-1 contained 5-iodouracil 2ʹ-aminomethylmorpholino nucleoside with IC50 126 ± 6 μM, while in the case of PARP-2 it was adenine 2ʹ-aminomethylmorpholino nucleoside (IC50 63 ± 10 μM). In silico analysis revealed that thymine and uracil-based NAD+ analogs were recognized as the NAD+-analog that targets the nicotinamide binding site. On the contrary, the adenine 2ʹ-aminomethylmorpholino nucleoside-based NAD+ analogs were predicted to identify as PAR-analogs that target the acceptor binding site of PARP-2, representing a novel molecular mechanism for selective PARP inhibition. This discovery opens a new avenue for the rational design of PARP-1/2 specific inhibitors.


2012 ◽  
Vol 46 (3) ◽  
pp. 121-130 ◽  
Author(s):  
Julia Lehtinen ◽  
Aniket Magarkar ◽  
Michał Stepniewski ◽  
Satu Hakola ◽  
Mathias Bergman ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Łukasz Charzewski ◽  
Krystiana A. Krzyśko ◽  
Bogdan Lesyng

Recently, molecular covalent docking has been extensively developed to design new classes of inhibitors that form chemical bonds with their biological targets. This strategy for the design of such inhibitors, in particular boron-based inhibitors, holds great promise for the vast family of β-lactamases produced, inter alia, by Gram-negative antibiotic-resistant bacteria. However, the description of covalent docking processes requires a quantum-mechanical approach, and so far, only a few studies of this type have been presented. This study accurately describes the covalent docking process between two model inhibitors - representing two large families of inhibitors based on boronic-acid and bicyclic boronate scaffolds, and three β-lactamases which belong to the A, C, and D classes. Molecular fragments containing boron can be converted from a neutral, trigonal, planar state with sp2 hybridization to the anionic, tetrahedral sp3 state in a process sometimes referred to as morphing. This study applies multi-scale modeling methods, in particular, the hybrid QM/MM approach which has predictive power reaching well beyond conventional molecular modeling. Time-dependent QM/MM simulations indicated several structural changes and geometric preferences, ultimately leading to covalent docking processes. With current computing technologies, this approach is not computationally expensive, can be used in standard molecular modeling and molecular design works, and can effectively support experimental research which should allow for a detailed understanding of complex processes important to molecular medicine. In particular, it can support the rational design of covalent boron-based inhibitors for β-lactamases as well as for many other enzyme systems of clinical relevance, including SARS-CoV-2 proteins.


Author(s):  
A.M. Anrdrianov ◽  
Yu.V. Kornoushenko ◽  
A.D. Karpenko ◽  
I.P. Bosko ◽  
Zh.V. Ignatovich ◽  
...  

Discovery of the nature of inhibiting cancer processes by small organic molecules has changed the principles of the development of drug compounds for antitumor therapy. Recent achievements in this area are associated with the design of small-molecule protein kinase inhibitors, organic compounds exhibiting directed pathogenetic action. In this study, in silico design of 38 potential anti-cancer compounds with multikinase profile was carried out based on the derivatives of 2-arylaminopyrimidine. Evaluation of inhibitory activity potential of these compounds against the native and mutant (T315I) forms of Bcr-Abl tyrosine kinase, an enzyme that plays a key role in the pathogenesis of chronic myeloid leukemia characterized by uncontrolled growth myeloid cells in peripheral blood and bone marrow, was performed using molecular modeling tools. As a result, 5 top-ranking compounds that exhibit, according to the calculated data, a high-affinity binding to the native and mutant Bcr-Abl tyrosine kinase were identified. The designed compounds were shown to form good scaffolds for the development of novel potent antitumor drugs.


Sign in / Sign up

Export Citation Format

Share Document