Persistently Auxetic Materials: Engineering the Poisson Ratio of 2D Self-Avoiding Membranes under Conditions of Non-Zero Anisotropic Strain

ACS Nano ◽  
2016 ◽  
Vol 10 (8) ◽  
pp. 7542-7549 ◽  
Author(s):  
Zachary W. Ulissi ◽  
Ananth Govind Rajan ◽  
Michael S. Strano
2021 ◽  
Vol 04 ◽  
Author(s):  
Ouassim Hamdi ◽  
Denis Rodrigue

: Auxetic materials have high potential due to their exceptional properties resulting from their negative Poisson ratio. Recently, several auxetic polymer-based materials have been developed. In fact, several applications are looking for a lightweight (less material consumed in production and transport) while having high mechanical performances (impact absorption, rigidity, strength, resistance, etc.). So, a balance between density and toughness/strength is of high importance, especially for military, sporting, and transport applications. So auxetic materials (especially foams) can provide high impact protection while limiting the material’s weight. This article presents a review of recent advances with a focus on auxetic polymers, with particular emphasis on the auxetic polymer foams in terms of their fabrication methods and processing conditions (depending on the nature of the cellular structure), the effect of the fabrication parameters on their final properties, as well as their models and potential applications.


Author(s):  
Joseph N. Grima ◽  
Elaine Manicaro ◽  
Daphne Attard

Auxetic materials exhibit the unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed (i.e. they exhibit a negative Poisson ratio; NPR), a property that may result in various enhanced properties. The NPR is the result of the manner in which particular geometric features in the micro- or nanostructure of the materials deform when they are subjected to uniaxial loads. Here, we propose and discuss a new model made from different-sized rigid rectangles, which rotate relative to each other. This new model has the advantage over existing models that it can be used to describe the properties of very different systems ranging from silicates and zeolites to liquid-crystalline polymers. We show that such systems can exhibit scale-independent auxetic behaviour for stretching in particular directions, with Poisson’s ratios being dependent on the shape and relative size of different rectangles in the model and the angle between them.


Author(s):  
R. C. Cieslinski ◽  
M. T. Dineen ◽  
J. L. Hahnfeld

Advanced Styrenic resins are being developed throughout the industry to bridge the properties gap between traditional HIPS (High Impact Polystyrene) and ABS (Acrylonitrile-Butadiene-Styrene copolymers) resins. These new resins have an unprecedented balance of high gloss and high impact energies. Dow Chemical's contribution to this area is based on a unique combination of rubber morphologies including labyrinth, onion skin, and core-shell rubber particles. This new resin, referred as a controlled morphology resin (CMR), was investigated to determine the toughening mechanism of this unique rubber morphology. This poster will summarize the initial studies of these resins using the double-notch four-point bend test of Su and Yee, tensile stage electron microscopy, and Poisson Ratio analysis of the fracture mechanism.


1979 ◽  
Vol 44 (6) ◽  
pp. 1942-1948 ◽  
Author(s):  
Jaroslav Hrouz ◽  
Michal Ilavský ◽  
Ivan Havlíček ◽  
Karel Dušek

The viscoelastic penetration and tensile behaviour of poly(methyl acrylate) and poly(ethyl acrylate) in the main transition region have been investigated. It was found that the time-temperature superposition could be carried out in the case of the penetration viscoelastic behaviour; the temperature dependence of the penetration and tensile shift factors was the same. The superimposed curves of the penetration and Young modulus allowed us to calculate the dependence of the Poisson ratio and thus to characterize the change in sample volume with deformation. It was demonstrated that the penetration method of determination of the viscoelastic behaviour is equivalent to the tensile method.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 655-665
Author(s):  
Stephanie C. Malek ◽  
Adam C. Overvig ◽  
Sajan Shrestha ◽  
Nanfang Yu

AbstractActively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.


Sign in / Sign up

Export Citation Format

Share Document