scholarly journals Hairpin Oligonucleotide Can Functionalize Gold Nanorods for in Vivo Application Delivering Cytotoxic Nucleotides and Curcumin: A Comprehensive Study in Combination with Near-Infrared Laser

ACS Omega ◽  
2020 ◽  
Vol 5 (44) ◽  
pp. 28463-28474
Author(s):  
Upasana Das ◽  
Avishek Bhuniya ◽  
Anup K. Roy ◽  
William H. Gmeiner ◽  
Supratim Ghosh
Small ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 582 ◽  
Author(s):  
Álvaro Cárcamo-Martínez ◽  
Juan Domínguez-Robles ◽  
Brónach Mallon ◽  
Md. Taifur Raman ◽  
Ana Sara Cordeiro ◽  
...  

Current strategies for the treatment of superficial non-melanoma skin cancer (NMSC) lesions include topical imoquimod, 5-fluorouracil, and photodynamic therapy. Although these treatments are effective, burning pain, blistering, and dermatitis have been reported as frequent side effects, making these therapies far from ideal. Plasmonic materials have been investigated for the induction of hyperthermia and use in cancer treatment. In this sense, the effectiveness of intratumorally and systemically injected gold nanorods (GnRs) in inducing cancer cell death upon near-infrared light irradiation has been confirmed. However, the in vivo long-term toxicity of these particles has not yet been fully documented. In the present manuscript, GnRs were included in a crosslinked polymeric film, evaluating their mechanical, swelling, and adhesion properties; moreover, their ability to heat up neonatal porcine skin (such as a skin model) upon irradiation was tested. Inclusion of GnRs into the films did not affect mechanical or swelling properties. GnRs were not released after film swelling, as they remained entrapped in the polymeric network; moreover, films did not adhere to porcine skin, altogether showing the enhanced biocompatibility of the material. GnR-loaded films were able to heat up the skin model over 40 °C, confirming the potential of this system for non-invasive local hyperthermia applications.


2019 ◽  
Vol 7 (24) ◽  
pp. 3811-3825 ◽  
Author(s):  
Panchanathan Manivasagan ◽  
Seung Won Jun ◽  
Van Tu Nguyen ◽  
Nguyen Thanh Phong Truong ◽  
Giang Hoang ◽  
...  

FA–COS–TGA–GNRs–DOX have been successfully designed as a drug delivery system for chemo-photothermal combination therapy.


2009 ◽  
Vol 20 (2) ◽  
pp. 209-212 ◽  
Author(s):  
Takahito Kawano ◽  
Yasuro Niidome ◽  
Takeshi Mori ◽  
Yoshiki Katayama ◽  
Takuro Niidome

2017 ◽  
Vol 114 (15) ◽  
pp. E3110-E3118 ◽  
Author(s):  
Moustafa R. K. Ali ◽  
Mohammad Aminur Rahman ◽  
Yue Wu ◽  
Tiegang Han ◽  
Xianghong Peng ◽  
...  

Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.


2014 ◽  
Vol 136 (20) ◽  
pp. 7317-7326 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Jing Wang ◽  
Xin Nie ◽  
Tao Wen ◽  
Yinglu Ji ◽  
...  

2017 ◽  
Vol 50 ◽  
pp. 534-545 ◽  
Author(s):  
Hong Zhu ◽  
Ying Chen ◽  
Fang-Jie Yan ◽  
Jin Chen ◽  
Xin-Feng Tao ◽  
...  

2016 ◽  
Vol 92 (2) ◽  
pp. 308-313 ◽  
Author(s):  
Sergey N. Arkhipov ◽  
Ilyas Saytashev ◽  
Marcos Dantus

Nanoscale ◽  
2014 ◽  
Vol 6 (21) ◽  
pp. 12591-12600 ◽  
Author(s):  
Zhiguo Zhou ◽  
Jun Wang ◽  
Wei Liu ◽  
Chao Yu ◽  
Bin Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document