scholarly journals Optofluidic Microengine in A Dynamic Flow Environment via Self-Induced Back-Action

ACS Photonics ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 1500-1507 ◽  
Author(s):  
Yuzhi Shi ◽  
Tongtong Zhu ◽  
Kim Truc Nguyen ◽  
Yi Zhang ◽  
Sha Xiong ◽  
...  
2017 ◽  
Vol 153 ◽  
pp. 263-271 ◽  
Author(s):  
Sara Palchetti ◽  
Daniela Pozzi ◽  
Anna Laura Capriotti ◽  
Giorgia La Barbera ◽  
Riccardo Zenezini Chiozzi ◽  
...  

2016 ◽  
Author(s):  
Hassan Karimi ◽  
Erni Dharma Putra ◽  
Kapil Kumar Thakur ◽  
Rahel Yusuf ◽  
Azwan Shaharun ◽  
...  

Author(s):  
Ana Marta Souza ◽  
Antônio César Valadares de Oliveira ◽  
Enrico Temporim Ribeiro ◽  
Francisco Souza ◽  
Marcelo Colombo Chiari

Tellus B ◽  
2006 ◽  
Vol 58 (4) ◽  
Author(s):  
Emily Lane ◽  
Synte Peacock ◽  
Juan M. Restrepo

Author(s):  
Sagar Chhetri ◽  
Abeer Alsadoon ◽  
Thair Al‐Dala'in ◽  
P. W. C. Prasad ◽  
Tarik A. Rashid ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1198
Author(s):  
Pauline H. M. Janssen ◽  
Sébastien Depaifve ◽  
Aurélien Neveu ◽  
Filip Francqui ◽  
Bastiaan H. J. Dickhoff

With the emergence of quality by design in the pharmaceutical industry, it becomes imperative to gain a deeper mechanistic understanding of factors impacting the flow of a formulation into tableting dies. Many flow characterization techniques are present, but so far only a few have shown to mimic the die filling process successfully. One of the challenges in mimicking the die filling process is the impact of rheological powder behavior as a result of differences in flow field in the feeding frame. In the current study, the rheological behavior was investigated for a wide range of excipients with a wide range of material properties. A new parameter for rheological behavior was introduced, which is a measure for the change in dynamic cohesive index upon changes in flow field. Particle size distribution was identified as a main contributing factor to the rheological behavior of powders. The presence of fines between larger particles turned out to reduce the rheological index, which the authors explain by improved particle separation at more dynamic flow fields. This study also revealed that obtained insights on rheological behavior can be used to optimize agitator settings in a tableting machine.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


Sign in / Sign up

Export Citation Format

Share Document