Microfluidic Biosensor for Rapid Nucleic Acid Quantitation Based on Hyperspectral Interferometric Amplicon-Complex Analysis

ACS Sensors ◽  
2021 ◽  
Author(s):  
Rongxin Fu ◽  
Wenli Du ◽  
Xiangyu Jin ◽  
Ruliang Wang ◽  
Xue Lin ◽  
...  
Lab on a Chip ◽  
2006 ◽  
Vol 6 (3) ◽  
pp. 414 ◽  
Author(s):  
Vasiliy N. Goral ◽  
Natalya V. Zaytseva ◽  
Antje J. Baeumner

2019 ◽  
Author(s):  
Richard Bruch ◽  
Julia Baaske ◽  
Claire Chatelle ◽  
Mailin Meirich ◽  
Sibylle Madlener ◽  
...  

Non-coding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated to many different diseases, such as cancer, dementia or cardiovascular conditions. The key for an effective treatment is an accurate initial diagnosis at an early stage, improving the patient’s survival chances. Here, we introduce a CRISPR/Cas13a powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a has been realized without any nucleic acid amplification. With a readout time of 9 minutes and an overall process time of less than 4 hours, a limit of detection of 10 pM was achieved, using a measuring volume of less than 0.6 µl. Furthermore, we demonstrate the feasibility of our versatile sensor platform to detect miR-19b in serum samples of children, suffering from brain cancer. The validation of our results with a standard qRT-PCR method shows the ability of our system to be a low-cost and target amplification-free tool for nucleic acid based diagnostics.


2019 ◽  
Vol 31 (51) ◽  
pp. 1905311 ◽  
Author(s):  
Richard Bruch ◽  
Julia Baaske ◽  
Claire Chatelle ◽  
Mailin Meirich ◽  
Sibylle Madlener ◽  
...  

2019 ◽  
Vol 31 (51) ◽  
pp. 1970365 ◽  
Author(s):  
Richard Bruch ◽  
Julia Baaske ◽  
Claire Chatelle ◽  
Mailin Meirich ◽  
Sibylle Madlener ◽  
...  

2006 ◽  
Vol 21 (12) ◽  
pp. 2217-2223 ◽  
Author(s):  
Sylvia Kwakye ◽  
Vasily N. Goral ◽  
Antje J. Baeumner

Author(s):  
W. Bernard

In comparison to many other fields of ultrastructural research in Cell Biology, the successful exploration of genes and gene activity with the electron microscope in higher organisms is a late conquest. Nucleic acid molecules of Prokaryotes could be successfully visualized already since the early sixties, thanks to the Kleinschmidt spreading technique - and much basic information was obtained concerning the shape, length, molecular weight of viral, mitochondrial and chloroplast nucleic acid. Later, additonal methods revealed denaturation profiles, distinction between single and double strandedness and the use of heteroduplexes-led to gene mapping of relatively simple systems carried out in close connection with other methods of molecular genetics.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


Sign in / Sign up

Export Citation Format

Share Document