Reprogramming the Biosynthesis of Precursor Peptide to Create a Selenazole-Containing Nosiheptide Analogue

Author(s):  
Yingzi Tan ◽  
Miao Wang ◽  
Yijun Chen
Keyword(s):  
Author(s):  
Ross Vermeulen ◽  
Shelly Deane ◽  
Leon Dicks ◽  
Johann Rohwer ◽  
Anton Du Preez van Staden

Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8188 bp plasmid, pPLA4. As with many class IIa bacteriocin operons, the pla operon encodes biosynthetic genes ( plaA : precursor peptide, plaB : immunity, plaC : accessory and plaD : ABC transporter) but does not encode local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum sensing genes on mobile bacteriocin encoding elements is a predisposition of the subgroup which includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105 and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons may be linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer’s transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.


2020 ◽  
Author(s):  
Nuwani W. Weerasinghe ◽  
Yeganeh Habibi ◽  
Kevin A. Uggowitzer ◽  
Christopher J. Thibodeaux

AbstractLanthipeptides are ribosomally-synthesized and post-translationally modified peptide (RiPP) natural products that are biosynthesized in a multistep maturation process by enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding, and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These “biophysical” processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native nanoelectrospray ionization coupled to ion mobility mass spectrometry (nanoESI-IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its non-covalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively-folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme, and that the precursor peptide itself exhibits higher order structure in the mass spectrometer. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes nanoESI-IM-MS as a versatile approach for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


2012 ◽  
Vol 3 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Y. Masuda ◽  
T. Zendo ◽  
K. Sonomoto

Bacteriocins are antimicrobial peptides that are ribosomally synthesised by bacteria. Bacteriocins produced by Gram-positive bacteria, including lactic acid bacteria, are under focus as the next generation of safe natural biopreservatives and as therapeutic alternatives to antibiotics. Recently, two novel types of non-lantibiotic class II bacteriocins have been reported with unique characteristics in their structure and biosynthesis mechanism. One is a circular bacteriocin that contains a head-to-tail structure in the mature form, and the other is a leaderless bacteriocin without an N-terminal extension in the precursor peptide. A circular structure can provide the peptide with remarkable stability against various stresses; indeed, circular bacteriocins are known to possess higher stability than general linear bacteriocins. Leaderless bacteriocins are distinct from general bacteriocins, because they do not contain N-terminal leader sequences, which are responsible for the recognition process during secretion and for inactivation of bacteriocins inside producer cells. Leaderless bacteriocins do not require any post-translational processing for activity. These two novel types of bacteriocins are promising antimicrobial compounds, and their biosynthetic mechanisms are expected to be applied in synthetic biology to design new peptides and for new mass production systems. However, many questions remain about their biosynthesis. In this review, we introduce recent studies on these types of bacteriocins and their potential to open a new world of antimicrobial peptides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fredarla S. Miller ◽  
Kathryn K. Crone ◽  
Matthew R. Jensen ◽  
Sudipta Shaw ◽  
William R. Harcombe ◽  
...  

AbstractPeptide backbone α-N-methylations change the physicochemical properties of amide bonds to provide structural constraints and other favorable characteristics including biological membrane permeability to peptides. Borosin natural product pathways are the only known ribosomally encoded and posttranslationally modified peptides (RiPPs) pathways to incorporate backbone α-N-methylations on translated peptides. Here we report the discovery of type IV borosin natural product pathways (termed ‘split borosins’), featuring an iteratively acting α-N-methyltransferase and separate precursor peptide substrate from the metal-respiring bacterium Shewanella oneidensis. A series of enzyme-precursor complexes reveal multiple conformational states for both α-N-methyltransferase and substrate. Along with mutational and kinetic analyses, our results give rare context into potential strategies for iterative maturation of RiPPs.


ChemBioChem ◽  
2010 ◽  
Vol 11 (13) ◽  
pp. 1867-1873 ◽  
Author(s):  
Wael E. Houssen ◽  
Stephen H. Wright ◽  
Arnout P. Kalverda ◽  
Gary S. Thompson ◽  
Sharon M. Kelly ◽  
...  

Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1661-1667 ◽  
Author(s):  
Bo Nilsson ◽  
Rolf Larsson ◽  
Jaan Hong ◽  
Graciela Elgue ◽  
Kristina Nilsson Ekdahl ◽  
...  

Abstract Recently, a C3-binding cyclic synthetic peptide (Compstatin) has been identified that binds to complement component C3 and inhibits complement activation. Here we have examined the influence of Compstatin on complement activation and its indirect effects on cellular responses in whole blood in two models for extracorporeal circulation. Compstatin effectively inhibited the generation of C3a and sC5b-9 and the binding of C3/ C3 fragments to the polymer surface. As a result of the inhibition of complement activation, the activation of polymorphonuclear leukocytes (PMNs; as assessed by the expression of CD11b) and the binding of these cells (CD16+) to the polymer surface were almost completely lost. In contrast, blood cell counts were not affected. Using surface plasmon resonance technology, we have confirmed that Compstatin exerts its inhibitory effect on complement activation by binding to native C3. These data show that complement activation, leading to activation and binding of PMNs to the biomaterial surface, can be abolished by the addition of Compstatin. The properties of Compstatin make Compstatin a promising drug for use in extracorporeal circuits to avoid bioincompatibility reactions, eg, during cardiopulmonary bypass, but also a favorable precursor peptide for the development of an anticomplement drug for oral use. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document