scholarly journals Thermal Decomposition of Iron Pentacarbonyl on Titania

Author(s):  
J. PHILLIPS ◽  
J. A. DUMESIC
1998 ◽  
Vol 47 (12) ◽  
pp. 2455-2462 ◽  
Author(s):  
V. V. Semenov ◽  
E. Yu. Ladilina ◽  
S. Ya. Khorshev ◽  
N. P. Makarenko ◽  
Yu. A. Kurskii ◽  
...  

2011 ◽  
Vol 266 ◽  
pp. 012050 ◽  
Author(s):  
S Yamamuro ◽  
M Okano ◽  
T Tanaka ◽  
K Sumiyama ◽  
N Nozawa ◽  
...  

2013 ◽  
Vol 2 (3) ◽  
pp. 333-357 ◽  
Author(s):  
Daniel Amara ◽  
Shlomo Margel

AbstractThe unique chemical and physical properties of the nano and microscale materials have led to important roles in the several scientific and technological fields. The magnetic nano/microparticles are of great interest because of its potential applications in, e.g., hyperthermia, magnetic resonance imaging (MRI), catalytic applications, etc. The decomposition of iron pentacarbonyl is one of the most common methods for the preparation of magnetic iron oxide and iron nanoparticles. However, Fe(CO)5 is severely toxic and alternative precursors should be used. Here, we describe the recent advances in the synthesis and characterization of the elemental iron and iron oxide nano/microcomposite particles by the thermal decomposition of ferrocene. The described synthesis process is based on simple nontoxic approaches including, for example, a solventless process. The particle size and size distribution as well as their composition, crystallinity, shape, and magnetic properties can be controlled via the synthesis conditions.


2020 ◽  
pp. 64-72
Author(s):  
L. V. Kozyreva ◽  
◽  
V. V. Kozyrev ◽  
I. S. Krekova ◽  
◽  
...  

Application of fuller materials for creation of the higt-strength coatings on part operating under abrasive wear is one of the promising ways of the resources increasing of road construction, emergency rescue and other types of equipment. However, in their creation process does not always comply with the environmental safety requirements, which leads to negative consequences for the natural environment and human health. The article presents the research work results of authors team created a coated powder by chemical vapor deposition of metal-organic compounds on the alumina particles surface and its applications for the wear-resistant coatings. A method of applying iron-tungsten coating on powder technical ceramics by thermal decomposition of vapors, containing iron pentacarbonyl and tungsten hexacarbonyl, is characterised by sequential application on powder particles of adhesion layer from mixture of iron pentacarbonyl and carbon monoxide in volume ratio of vapours1:5 at temperature of their thermal decomposition of 250 °С, and then surface layer from mixture of tungsten hexacarbonyl and carbon monoxide in volume ratio of vapours1:5 at temperature of their thermal decomposition of 800 °С. Metallization powder materials are carried out in a closed cycle, excluding contact workers with toxic substances and emissions of pollutants into the atmosphere, which ensures the safety of the production process. Plasma coatings obtained with the necessary physical and mechanical properties are obtained, which proves the effectiveness of the employed approach and promotes resource increase of the machines elements, subjected to abrasive wear.


Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Sign in / Sign up

Export Citation Format

Share Document