Comparison of Esterase Sensitivity, Metabolic Efficiency, and Toxicity Levels of Two Organophosphorus Insecticides: Parathion and Chlorpyrifos

Author(s):  
Janice E. Chambers ◽  
Edward C. Meek ◽  
Howard W. Chambers
Author(s):  
Grażyna Mazurkiewicz-Boroń ◽  
Teresa Bednarz ◽  
Elżbieta Wilk-Woźniak

Microbial efficiency in a meromictic reservoirIndices of microbial efficiency (expressed as oxygen consumption and carbon dioxide release) were determined in the water column of the meromictic Piaseczno Reservoir (in an opencast sulphur mine), which is rich in sulphur compounds. Phytoplankton abundances were low in both the mixolimnion (up to 15 m depth) and monimolimnion (below 15 m depth). In summer and winter, carbon dioxide release was 3-fold and 5-fold higher, respectively, in the monimolimnion than in the mixolimnion. Laboratory enrichments of the sulphur substrate of the water resulted in a decrease in oxygen consumption rate of by about 42% in mixolimnion samples, and in the carbon dioxide release rate by about 69% in monimolimnion samples. Water temperature, pH and bivalent ion contents were of major importance in shaping the microbial metabolic efficiency in the mixolimnion, whilst in the monimolimnion these relationships were not evident.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
A Vassiliou ◽  
K Alavian ◽  
M Tsujishita ◽  
H Bae

Abstract Introduction Primary brain tumours originate from cells within the brain. The commonest malignant types are gliomas which are graded from I-IV. Emerging evidence has elucidated the function of the mitochondrially localised B-cell lymphoma-extra-large (Bcl-xL) protein, and its promotion of tumour progression-associated properties. Our lab has previously established that Bcl-xL-overexpressing neurons increase metabolic efficiency by producing more adenosine triphosphate and consuming less oxygen, which we assumed, fuels cancer cells to proliferate. Method We quantified the subcellular expression patterns of Bcl-xL in primary brain tumour samples through immunohistochemistry on a brain tissue microarray containing 16 glioma cases from Grades II-IV. We used antibodies against Bcl-xL, heat shock protein 60 for mitochondrial detection and proliferating cell nuclear antigen for cancerous cell detection. Results Bcl-xL is overexpressed in cancerous cells of Grade IV gliomas and is significantly greater than cancerous cells of Grade III and Grade II gliomas. Cancerous cells express higher levels of Bcl-xL than non-cancerous cells in all grades of glioma. Conclusions Bcl-xL-overexpressing neurons exhibit enhanced metabolic efficiency, contributing to increased proliferation rates. Future research should focus on the characterisation of ATP levels and oxygen consumption in glioma cells. Conclusively, pharmacological inhibition of Bcl-xL will suppress the proliferation rate in gliomas and cease cancer cell growth.


1993 ◽  
Vol 38 (11) ◽  
pp. 2001-2009 ◽  
Author(s):  
Manfred J. Müller ◽  
Lars U. Schmidt ◽  
Jürgen Körber ◽  
Alexander von Zur Mühlen ◽  
Helmuth Canzler ◽  
...  

2008 ◽  
Vol 183 (2-3) ◽  
pp. 804-810 ◽  
Author(s):  
Jin-Fang Wang ◽  
Ming-Hui Gao ◽  
Ning-Feng Wu ◽  
Can-Ping Pan

2000 ◽  
Vol 279 (4) ◽  
pp. E806-E814 ◽  
Author(s):  
Henriette Pilegaard ◽  
George A. Ordway ◽  
Bengt Saltin ◽  
P. Darrell Neufer

Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60–90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to β-actin) increased by three- to sevenfold in response to exercise, peaking after 1–2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise ( n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.


2014 ◽  
Vol 28 (10) ◽  
pp. 4303-4311 ◽  
Author(s):  
Tomas A. Schiffer ◽  
Björn Ekblom ◽  
Jon O. Lundberg ◽  
Eddie Weitzberg ◽  
Filip J. Larsen

Sign in / Sign up

Export Citation Format

Share Document