Designing New Inorganic Compounds from 2D Building Blocks

2005 ◽  
Vol 17 (2) ◽  
pp. 234-236 ◽  
Author(s):  
Laurent Cario ◽  
Houria Kabbour ◽  
Alain Meerschaut
2014 ◽  
Vol 69 (12) ◽  
pp. 2431-2437 ◽  
Author(s):  
C. Kazner ◽  
S. Jamil ◽  
S. Phuntsho ◽  
H. K. Shon ◽  
T. Wintgens ◽  
...  

While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2–4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening.


2006 ◽  
Vol 45 (2) ◽  
pp. 917-922 ◽  
Author(s):  
Houria Kabbour ◽  
Laurent Cario ◽  
Michel Danot ◽  
Alain Meerschaut

2018 ◽  
Vol 47 (45) ◽  
pp. 16031-16035 ◽  
Author(s):  
Mehdi Elsayed Moussa ◽  
Martin Piesch ◽  
Martin Fleischmann ◽  
Andrea Schreiner ◽  
Michael Seidl ◽  
...  

The synthesis of the highly soluble salts [Cu(CH3CN)3.5][FAl{OC(C6F10)(C6F5)}3] and [Cu(CH3CN)4][Al{OC(CF3)3}4] is presented. These compounds react with polyphosphorus ligand complexes to form pristine phosphorus-rich Cu(i) dimers.


ChemInform ◽  
2006 ◽  
Vol 37 (15) ◽  
Author(s):  
Houria Kabbour ◽  
Laurent Cario ◽  
Michel Danot ◽  
Alain Meerschaut

ChemInform ◽  
2005 ◽  
Vol 36 (16) ◽  
Author(s):  
Laurent Cario ◽  
Houria Kabbour ◽  
Alain Meerschaut

2004 ◽  
Vol 76 (9) ◽  
pp. 1633-1646 ◽  
Author(s):  
O. A. Gerasko ◽  
M. N. Sokolov ◽  
V. P. Fedin

The review surveys new data on the directed construction of supramolecular organic–inorganic compounds from macrocyclic cavitand cucurbit[6]uril (C36H36N24O12)and mono- and polynuclear aqua complexes. Due to the presence of polarized carbonyl groups, cucurbit[6]uril forms strong complexes with alkali, alkaline earth and rare-earth metal ions, and hydrogen-bonded supramolecular adducts with cluster and polynuclear aqua complexes of transitional metals. A wide variety of supramolecular compounds and their unique structures are described.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document