scholarly journals An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics

2009 ◽  
Vol 5 (10) ◽  
pp. 2909-2923 ◽  
Author(s):  
Roger S. Armen ◽  
Jianhan Chen ◽  
Charles L. Brooks
2016 ◽  
Author(s):  
Lucia Sessa ◽  
Luigi Di BIasi ◽  
Rosaura Parisi ◽  
Simona Concilio ◽  
Stefano Piotto

Motivation Molecular docking is an efficient method to predict the conformations adopted by the ligand within the target binding site. Usually, standard docking protocol involves only one structure to represent the receptor, overlooking the changes in the binding pocket geometry induced by ligand binding. In our previous work, we observed that different conformations of the same target show different volume and shape of the internal cavities (Sessa et al., 2016). Different ligands may stabilize different receptor conformations with different internal cavities. Consequently, the crystallographic data represent the adaptation of a protein to a particular ligand. Cross-docking is a validation procedure consisting in docking a series of ligands into different conformation of the same receptor. Since the structures of the same receptor can be rather different, the cross-docking analyses are typically very poor. In these cases the internal cavity of the buried binding pocket does not have space enough to accommodate all ligands and this can radically affect the outcome and alter the cross-docking results. The changes of the cavity volume might explain the failure of traditional docking method and support the hypothesis that a single representative structure for the receptor is not enough. Keeping target proteins flexible during the docking has a high computational cost. To overcome this limit, our docking strategy is to represent receptor flexibility through an inexpensive method that generates a series of target structures. Starting from a known target structure, we used the molecular dynamics (MD) simulations to explore the conformational changes induced by ligand binding and to collect several snapshots of receptor structures to perform the cross-docking studies. To validate the accuracy of our flexible protocol in docking, we used a set of 10 crystallographic conformations of Androgen Receptor with the same target but with a different ligand. We performed two parallel experiments of docking, one with a rigid protein target and one considering flexible receptor structures. In addition, we compared the results for both experiments in the re-docking and in the cross-docking analysis. Methods Ten receptor structures complexed with a ligand were extracted from the X-ray structures in the PDB database (Berman et al., 2000). Several conformations for each receptor were selected from the molecular dynamics simulations (MD) at regular time intervals (each 500 ps). The MD simulations were performed with the software YASARA Structure 16.2.14 (Krieger & Vriend, 2014) using AMBER14 as force field. The molecular docking simulations were performed using VINA provided in the YASARA package. "Abstract truncated at 3,000 characters - the full version is available in the pdf file"


2016 ◽  
Author(s):  
Lucia Sessa ◽  
Luigi Di BIasi ◽  
Rosaura Parisi ◽  
Simona Concilio ◽  
Stefano Piotto

Motivation Molecular docking is an efficient method to predict the conformations adopted by the ligand within the target binding site. Usually, standard docking protocol involves only one structure to represent the receptor, overlooking the changes in the binding pocket geometry induced by ligand binding. In our previous work, we observed that different conformations of the same target show different volume and shape of the internal cavities (Sessa et al., 2016). Different ligands may stabilize different receptor conformations with different internal cavities. Consequently, the crystallographic data represent the adaptation of a protein to a particular ligand. Cross-docking is a validation procedure consisting in docking a series of ligands into different conformation of the same receptor. Since the structures of the same receptor can be rather different, the cross-docking analyses are typically very poor. In these cases the internal cavity of the buried binding pocket does not have space enough to accommodate all ligands and this can radically affect the outcome and alter the cross-docking results. The changes of the cavity volume might explain the failure of traditional docking method and support the hypothesis that a single representative structure for the receptor is not enough. Keeping target proteins flexible during the docking has a high computational cost. To overcome this limit, our docking strategy is to represent receptor flexibility through an inexpensive method that generates a series of target structures. Starting from a known target structure, we used the molecular dynamics (MD) simulations to explore the conformational changes induced by ligand binding and to collect several snapshots of receptor structures to perform the cross-docking studies. To validate the accuracy of our flexible protocol in docking, we used a set of 10 crystallographic conformations of Androgen Receptor with the same target but with a different ligand. We performed two parallel experiments of docking, one with a rigid protein target and one considering flexible receptor structures. In addition, we compared the results for both experiments in the re-docking and in the cross-docking analysis. Methods Ten receptor structures complexed with a ligand were extracted from the X-ray structures in the PDB database (Berman et al., 2000). Several conformations for each receptor were selected from the molecular dynamics simulations (MD) at regular time intervals (each 500 ps). The MD simulations were performed with the software YASARA Structure 16.2.14 (Krieger & Vriend, 2014) using AMBER14 as force field. The molecular docking simulations were performed using VINA provided in the YASARA package. "Abstract truncated at 3,000 characters - the full version is available in the pdf file"


Author(s):  
Salam Pradeep Singh ◽  
Iftikar Hussain ◽  
Bolin Kumar Konwar ◽  
Ramesh Chandra Deka ◽  
Chingakham Brajakishor Singh

Aim and Objective: To evaluate a set of seventy phytochemicals for their potential ability to bind the inhibitor of nuclear factor kappaB kinase beta (IKK-β) which is a prime target for cancer and inflammatory diseases. Materials and Methods: Seventy phytochemicals were screened against IKK-β enzyme using DFT-based molecular docking technique and the top docking hits were carried forward for molecular dynamics (MD) simulation protocols. The adme-toxicity analysis was also carried out for the top docking hits. Results: Sesamin, matairesinol and resveratrol were found to be the top docking hits with a total score of -413 kJ/mol, -398.11 kJ/mol and 266.73 kJ/mol respectively. Glu100 and Gly102 were found to be the most common interacting residues. The result from MD simulation observed a stable trajectory with a binding free energy of -107.62 kJ/mol for matairesinol, -120.37 kJ/mol for sesamin and -40.56 kJ/mol for resveratrol. The DFT calculation revealed the stability of the compounds. The ADME-Toxicity prediction observed that these compounds fall within the permissible area of Boiled-Egg and it does not violate any rule for pharmacological criteria, drug-likeness etc. Conclusion: The study interprets that dietary phytochemicals are potent inhibitors of IKK-β enzyme with favourable binding affinity and less toxic effects. In fact, there is a gradual rise in the use of plant-derived molecules because of its lesser side effects compared to chemotherapy. The study has also provided an insight by which the phytochemicals inhibited the IKK-β enzyme. The investigation would also provide in understanding the inhibitory mode of certain dietary phytochemicals in treating cancer.


2019 ◽  
Vol 120 (10) ◽  
pp. 17015-17029 ◽  
Author(s):  
Wen‐Shan Liu ◽  
Rui‐Rui Wang ◽  
Ying‐Zhan Sun ◽  
Wei‐Ya Li ◽  
Hong‐Lian Li ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


Sign in / Sign up

Export Citation Format

Share Document