Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), A Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

2011 ◽  
Vol 88 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Mohamed Touaibia ◽  
Michel Guay
FEBS Letters ◽  
1993 ◽  
Vol 329 (1-2) ◽  
pp. 21-24 ◽  
Author(s):  
G.F. Sud'ina ◽  
O.K. Mirzoeva ◽  
M.A. Pushkareva ◽  
G.A. Korshunova ◽  
N.V. Sumbatyan ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Luc H. Boudreau ◽  
Grégoire Lassalle-Claux ◽  
Marc Cormier ◽  
Sébastien Blanchard ◽  
Marco S. Doucet ◽  
...  

Leukotrienes are inflammatory mediators that actively participate in the inflammatory response and host defense against pathogens. However, leukotrienes also participate in chronic inflammatory diseases. 5-lipoxygenase is a key enzyme in the biosynthesis of leukotrienes and is thus a validated therapeutic target. As of today, zileuton remains the only clinically approved 5-lipoxygenase inhibitor; however, its use has been limited due to severe side effects in some patients. Hence, the search for a better 5-lipoxygenase inhibitor continues. In this study, we investigated structural analogues of caffeic acid phenethyl ester, a naturally-occurring 5-lipoxygenase inhibitor, in an attempt to enhance the inhibitory activity against 5-lipoxygenase and determine structure-activity relationships. These compounds were investigated for their ability to attenuate the biosynthesis of leukotrienes. Compounds 13 and 19, phenpropyl and diphenylethyl esters, exhibited significantly enhanced inhibitory activity when compared to the reference molecules caffeic acid phenethyl ester and zileuton.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
M Albadry ◽  
Y Zou ◽  
Y Takahashi ◽  
A Waters ◽  
M Hossein ◽  
...  

2020 ◽  
Author(s):  
Takayuki Tonoi ◽  
Miyuki Ikeda ◽  
Teruyuki Sato ◽  
Ryo Kawahara ◽  
Takatsugu Murata ◽  
...  

<div>An efficient and practical method for the synthesis of (9R,14R,17R)-FE399, a novel antitumor bicyclic depsipeptide, was developed. A 2-methyl-6-nitrobenzoic anhydride (MNBA)-mediated dehydration condensation reaction was effectively employed for the formation of the 16-membered macrocyclic depsipeptide moiety of FE399. FE399 was found to exist as an inseparable equilibrium mixture of conformational isomers; the mixture was quantitatively transformed into the corresponding S-benzyl product and isolated as a single isomer. Thus, we could confirm that the molecular structure of FE399 obtained by this method is identical to that of the natural product.</div>


2018 ◽  
Author(s):  
Christian R. Zwick ◽  
Hans Renata

We report an efficient ten-step synthesis of antiviral natural product cavinafungin B in 37% overall yield. By leveraging a one-pot chemoenzymatic synthesis of (2S,4R)-4-methylproline and oxazolidine-tethered (Rink-Boc-ATG-resin) SPPS methodology, the assembly of our molecular target could be conducted in an efficient manner.This general strategy could prove amenable to the construction of other natural and unnatural linear lipopeptides. The value of incorporating biocatalytic steps in complex molecule synthesis is highlighted by this work.


2019 ◽  
Author(s):  
Timothy Newhouse ◽  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central 7-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI<sub>2</sub>-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.</p> </div>


2019 ◽  
Author(s):  
Lars Gnägi ◽  
Severin Vital Martz ◽  
Daniel Meyer ◽  
Robin Marc Schärer ◽  
Philippe Renaud

<div><div><div><div><p>A very concise total synthesis of (+)-brefeldin C starting from 2-furanylcyclopentene is described. This approach is based on an unprecedented enantioselective radical hydroalkynylation process to introduce the two cyclopentane stereocenters in a single step. The use of a furan substituent allows to achieve a high trans diastereoselectivity during the radical process and it contains the four carbon atoms C1–C4 of the natural product in an oxidation state closely related to the one of the target molecule. The eight-step synthesis require six product purifications and it provides (+)-brefeldin C in 18% overall yield.</p></div></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document