Characterization of CuCl2/PdCl2/Activated Carbon Catalysts for the Synthesis of Diethyl Carbonate

2002 ◽  
Vol 16 (1) ◽  
pp. 182-188 ◽  
Author(s):  
A. Punnoose ◽  
M. S. Seehra ◽  
B. C. Dunn ◽  
E. M. Eyring
Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


Adsorption ◽  
2011 ◽  
Vol 18 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Qing He ◽  
Yingbo Xu ◽  
Chenghui Wang ◽  
Shike She ◽  
Shun Zhou ◽  
...  

2020 ◽  
Author(s):  
Antonius Agus Bambang Haryanto ◽  
Ari Handono Ramelan ◽  
MTh Sri Budiastuti ◽  
Pranoto

2021 ◽  
Vol 46 ◽  
pp. 101476
Author(s):  
Azeem Sarwar ◽  
Majid Ali ◽  
Asif Hussain Khoja ◽  
Azra Nawar ◽  
Adeel Waqas ◽  
...  

Author(s):  
Mridushmita Baruah ◽  
Soremo Likongthung Ezung ◽  
Aola Supong ◽  
Parimal Chandra Bhomick ◽  
Suraj Kumar ◽  
...  

2012 ◽  
Vol 33 ◽  
pp. 47-51 ◽  
Author(s):  
Nawel Spahis ◽  
Mohamed Dellali ◽  
Hacene Mahmoudi

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Nicolás Carrara ◽  
Carolina Betti ◽  
Fernando Coloma-Pascual ◽  
María Cristina Almansa ◽  
Laura Gutierrez ◽  
...  

A series of low-loaded metallic-activated carbon catalysts were evaluated during the selective hydrogenation of a medium-chain alkyne under mild conditions. The catalysts and support were characterized by ICP, hydrogen chemisorption, Raman spectroscopy, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR micro-ATR), transmission electronic microscopy (TEM), and X-ray photoelectronic spectroscopy (XPS). When studying the effect of the metallic phase, the catalysts were active and selective to the alkene synthesis. NiCl/C was the most active and selective catalytic system. Besides, when the precursor salt was evaluated, PdN/C was more active and selective than PdCl/C. Meanwhile, alkyne is present in the reaction media, and geometrical and electronic effects favor alkene desorption and so avoid their overhydrogenation to the alkane. Under mild conditions, nickel catalysts are considerably more active and selective than the Lindlar catalyst.


Sign in / Sign up

Export Citation Format

Share Document