Rhizopus oryzae Whole-Cell-Catalyzed Biodiesel Production from Oleic Acid intert-Butanol Medium†

2008 ◽  
Vol 22 (1) ◽  
pp. 155-158 ◽  
Author(s):  
Wei Li ◽  
Wei Du ◽  
Dehua Liu
BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 850-860 ◽  
Author(s):  
Qiyang He ◽  
Hao Shi ◽  
Huaxiang Gu ◽  
Gilda Naka ◽  
Huaihai Ding ◽  
...  

Whole cell biocatalysts for biodiesel production have garnered significant attention in recent years, as they can help avoid the complex procedures of isolation, purification, and immobilization of extracellular lipase. Because of its renewability and biodegradability, loofah (Luffa cylindrica) sponge is an advantageous substitute for traditional biomass carriers in whole cell immobilization. Rhizopus oryzae mycelia can spontaneously attach onto loofah sponge particles (LSPs) during cell cultivation. The highest immobilized R. oryzae cells concentration can reach up to 1.40 g/1 g of LSPs. The effects of biocatalyst addition and water content on methanolysis for biodiesel production were investigated in this paper. The operational stability of glutaraldehyde-treated biocatalyst at 35 °C, using a 1:1 oil-to-methanol ratio, was assayed, revealing a 3.4-fold increase in half-life compared with the untreated biocatalyst. Under optimized conditions, the yield of methyl esters in the reaction mixture reached 82.2% to 92.2% in each cycle. These results suggested that loofah sponge is a potential fungi carrier for an immobilized whole-cell biocatalyst.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1365
Author(s):  
Aran H-Kittikun ◽  
Benjamas Cheirsilp ◽  
Natthapat Sohsomboon ◽  
Darun Binmarn ◽  
Wasu Pathom-aree ◽  
...  

This is the first report on the possible use of decanter cake waste (DCW) from palm oil industry as alternative nutrient sources and biomass support particles for whole-cell lipase production under solid-state fermentation (SSF) by newly isolated fungal Aspergillus sp. MS15 and their application as a low-cost and environment-friendly biocatalyst for biodiesel production. The results found that DCW supplemented with 0.1% K2HPO4, 0.05% MgSO4·7H2O, 1% peptone and 2% urea and pH adjusted to 6.0 was optimal for whole-cell lipase production. The optimal moisture content and fermentation temperature was 60% and 37.5 °C, respectively. Environmentally friendly biodiesel production, through either esterification or transesterification using whole-cell lipase immobilized on DCW as a biocatalyst, was optimized. The optimal reaction temperature for both reactions was 37 °C. The whole-cell lipase effectively esterified oleic acid into >95% biodiesel yield through esterification under optimal water activity at 0.71 and an optimal methanol to oleic acid molar ratio of 2:1, and also effectively transesterified palm oil under optimal water activity at 0.81 and an optimal methanol to oil molar ratio of 3:1. The fuel properties of produced biodiesel are close to the international biodiesel standards. These results have shown the circular utilization of palm oil mill waste for the low-cost production of an effective biocatalyst, and may contribute greatly to the sustainability of renewable bioenergy production.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Xiaoxu Yang ◽  
Yan Zhang ◽  
Huimin Pang ◽  
Sheng Yuan ◽  
Xuxia Wang ◽  
...  

In this study, we overcame the limitations of single-enzyme system catalysis by codisplaying Candida rugosa lipase 1 (CRL1) and Rhizopus oryzae lipase (ROL) on the cell surfaces of the whole-cell catalyst Pichia pastoris to produce biodiesel from tallow seed oil. We screened double antibiotic-resistant strains on tributyrin plates, performed second electroporation based on single-displayed ROL on GS115/KpRS recombinants and single-displayed CRL1 on GS115/ZCS recombinants and obtained an ROL/CRL1 codisplay on P. pastoris GS115 surfaces. The maximum activity of the codisplaying GS115/pRCS recombinant was 470.59 U/g dried cells, which was 3.9-fold and 1.3-fold higher than that of single-displayed ROL and CRL1, respectively. When self-immobilized lipases were used as whole-cell catalysts, the rate of methyl ester production from GS115/pRCS harboring ROL and CRL1 was 1.4-fold higher than that obtained with single-displayed ROL. Therefore, biodiesel catalysis by synergetic codisplayed enzymes is an alternative biodiesel production strategy.


2013 ◽  
Vol 17 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Sneha Athalye ◽  
Ratna Sharma-Shivappa ◽  
Steven Peretti ◽  
Praveen Kolar ◽  
Jack P. Davis

2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


Sign in / Sign up

Export Citation Format

Share Document