Degradation of Low Molecular Weight Volatile Organic Compounds by Plants Genetically Modified with Mammalian Cytochrome P450 2E1

2008 ◽  
Vol 42 (1) ◽  
pp. 289-293 ◽  
Author(s):  
C. Andrew James ◽  
Gang Xin ◽  
Sharon L. Doty ◽  
Stuart E. Strand
2020 ◽  
Vol 30 (2) ◽  
pp. 112-121 ◽  
Author(s):  
R. Umarani ◽  
M. Bhaskaran ◽  
C. Vanitha ◽  
M. Tilak

AbstractSeed is a fertilized mature ovule, which possesses an embryonic plant. When the dry, mature seeds are subjected to imbibition, they release a wide range of organic substances, which include low molecular weight carbonyl compounds (gases and volatiles) and water-soluble organic substances (enzymes and polysaccharides). The volatile organic compounds (VOCs) are molecules of low molecular weight (300 g mol−1) and high vapour pressure (0.01 kPa at 20°C) and include diverse chemical compounds. The nature and emission kinetics of volatiles produced from seeds vary, depending on the moisture content of the seeds. Orthodox seeds stored at ‘low seed moisture content’ undergo seed deterioration, predominantly due to lipid peroxidation, initiated by autoxidation or enzymatic oxidation of unsaturated or polyunsaturated fatty acids. This peroxidation leads to emission of volatile compounds. The quantity of VOCs emitted is positively correlated with the advancement of seed deterioration. With respect to the seed germination process, exposure of seeds to ‘high moisture conditions’ leads to increased respiration, triggers glycolysis and mobilization of storage reserves, resulting in the emission of volatile metabolic products. The quantity of VOCs emitted on commencement of metabolic activity in germinating seeds depends on (1) vigour status and (2) amount of storage reserves. Since it has been established that there is a significant difference between high and low vigour seeds with respect to quantity and profile of VOCs emitted, there is great potential for utilizing the VOC profile to obtain a quick and reproducible test of vigour status of crop seeds. In order to harness the VOC profile for quick assessment of vigour status of seeds, research has to be taken up to develop standard protocols for fingerprinting of VOCs for the purpose of seed vigour assessment and to fix the standard volatile biomarker(s) specific to crop and vigour status of seeds.


2015 ◽  
Vol 7 (2) ◽  
pp. 458-465 ◽  
Author(s):  
O. V. Rodinkov ◽  
G. A. Zhuravlyova ◽  
E. A. Vaskova ◽  
I. A. Platonov

Anhydrous potassium fluoride has been proposed as a novel selective moisture trapping agent for gas chromatography to remove water vapor during adsorption concentration of low molecular weight volatile organic compounds (VOCs) from moist air.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 683
Author(s):  
Eric W. Riddick

Introduction: Evidence that volatile organic compounds (VOCs) and non-VOCs stimulate oviposition by aphidophagous predators is scattered throughout the literature. The objectives of this review are to (1) compile records indicating that VOCs and non-VOCs are responsible for oviposition stimulation, (2) calculate an egg production ratio (EPR) for stimulated predators, and (3) determine if EPR is correlated with vapor pressure and molecular weight of active compounds. Methods: The USDA (United States Department of Agriculture), National Agricultural Library, online digital catalog system was used to retrieve abstracts, then the full text of manuscripts on oviposition stimulants for predators. Oviposition-stimulating VOCs and non-VOCS were tabulated with molecular weights and vapor pressure estimates. EPRs were calculated for stimulated coccinellids, syrphids, and chrysopids. Results: Both VOCs and non-VOCs stimulated oviposition behavior by coccinellids and syrphids, but not chrysopids. EPR was greatest for syrphids. Two VOCs, (E)-β-farnesene and 3-methyl-2-butenal, stimulated very high EPR values by the syrphid Episyrphusbalteatus. Regardless of predator taxa, EPR was negatively and positively correlated with molecular weight and vapor pressure, respectively. Conclusions: Syrphids (rather than coccinellids or chrysopids) produce more eggs in response to VOCs. Organic compounds with low-to-moderate molecular weights and moderate-to-high vapor pressures might be most effective oviposition stimulants for aphidophagous predators.


Author(s):  
Nguyen Thi Hien ◽  
Do Thi Cam Nhung ◽  
Nguyen Phu Hung ◽  
Bui Phuong Thuan ◽  
Nguyen Quang Huy

Benzene (B), toluene (T), ethylbenzene (E) and xylene (X) are used commonly in paint industry, so workers who are a high risk of exposure to organic solvent (VOCs). CYP2E1 gene encodes CYP2E1 which plays an important role in the metabolism and bio-activation of volatile organic compounds. When workers expose to VOCs, their body will have a mechanism to metabolize the toxic. The enhancement of mRNA expression of CYP2E1 is a very sensitive and accurate biological marker, which is the basis for the next study to propose the level of mRNA expression of CYP2E1 gene as a human biological indicator to monitor to workers occupationally exposed to VOCs. In this study, we studied the level of mRNA expression of CYP2E1 gene from 118 participants that including 73 workers of exposed group from the paint factories and 45 workers of non-exposed group from garment factories by using Realtime-PCR with SYBR Green – an asymmetrical cyanine dye used as a nucleic acid stain in molecular biology. The initial results, showed that the exposed group had a higher mRNA expression level of CYP2E1 than the non-exposed group approximately 10.47 times, and this difference was statistically significant (P value < 0.05). And the age and the duration of exposure to organic solvents do not affect the expression level of CYP2E1. Keywords CYP2E1, the metabolisms of volatile organic compounds, mRNA expression of CYP2E1. References [1] A. Mendoza-Cantu, F. Castorena-Torres, M. Bermudez De Leon et al., Occupational toluene exposure induces cytochrome P450 2E1 mRNA expression in peripheral lymphocytes, Environmental Health Perspectives, 114 (2006) 494 - 499. https://doi.org/10.1289/ehp.8192.[2] J.H. Hartman, G. Boysen and G.P. Miller, CYP2E1 metabolism of styrene involves allostery, Drug Metabolism and Disposition, 40 (2012) 1976-1983. https://doi.org/10.1124/dmd. 112.046698. [3] S.M. Zhu, X.F. Ren, J.X. Wan et al., Evaluation in vinyl chloride monomer (VCM) - exposed workers and the relationship between liver lesions and gene polymorphisms of metabolic enzymes, World Journal of Gastroenterology,11 (2005) 5821 -5827. 10.3748/wjg.v11.i37.5821.[4] J. Wan, J. Shi, L. Hui et al., Association of genetic polymorphisms in CYP2E1, MPO, NQO1, GSTM1, and GSTT1 genes with benzene poisoning, Environmental Health Perspectives, 110 (2002), 1213-1218. https://doi.org/10.1289/ ehp.021101213.[5] U. Bernauer, B. Vieth, R. Ellrich et al., CYP2E1 - dependent benzene toxicity: the role of extrahepatic benzene metabolism, Archives of Toxicology, 73 (1999) 189 -196. https://doi.org/ 10.1007/s002040050605. [6] P.L. Sheets, G.S. Yost and G.P. Carlson. Benzene metabolism in human lung cell lines BEAS‐2B and A549 and cells overexpressing CYP2F1, Journal of Biochemical and Molecular Toxicology, 18 (2004) 92-99. https://doi.org/10. 1002/jbt.20010.[7] V. Nedelcheva, I. Gut, P. Souček et al., Metabolism of benzene in human liver microsomes: individual variations in relation to CYP2E1 expression, Archives of Toxicology, 73 (1999) 33-40. https://doi.org/10.1007/s0020400 50583.[8] W. Tassaneeyakul, D.J. Birkett, J.W. Edwards et al., Human cytochrome P450 isoform specificity in the regioselective metabolism of toluene and o-, m-and p-xylene, Journal of Pharmacology and Experimental Therapeutics, 276 (1996) 101 - 108. 10.1163/2211730x96x00063[9] A.-H. Wang, S.-M. Zhu, Y.-L. Qiu et al., CYP2E1 mRNA expression, genetic polymorphisms in peripheral blood lymphocytes and liver abnormalities in Chinese VCM-exposed workers, International Journal of Occupational Medicine and Environmental Health, 21 (2008), 141 - 146. 10.2478/v10001-008-0016-x.[10] J. Zhang, Y. Lihong, G. Liang et al., Detection of CYP2E1, a genetic biomarker of susceptibility to benzene metabolism toxicity in immortal human lymphocytes derived from the Han Chinese population, Biomedical and Environmental Sciences, 24 (2011) 300-309. https://doi.org/10. 3967/0895-3988.2011.03.014[11] American Conference of Industrial Hygienists, Guide to Occupational Exposeure Values, ACGIH, Cincinnati, 2018.[12] Bộ Y Tế, Quyết định của Bộ trưởng Bộ Y tế về việc ban hành 21 tiêu chuẩn vệ sinh lao động, 05 nguyên tắc và 07 thông số vệ sinh lao động, 2002.[13] American Conference of Industrial Hygienists, Threshold Limit Value for Chemical Substances and Physical Agents and Biological Exposure Indices, ACGIH, Cincinnati, 2018.[14] Bộ Y Tế, Thông tư 28/2006/TT- BYT hướng dẫn quản lý bệnh bệnh nghề nghiệp, 2016.[15] M. Al Zallouha, Y. Landkocz, J. Brunet et al., Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system", Environmental Research, 152 (2017) 328-335. https://doi.org/10.1016/j.envres. 2016.10.027  


2011 ◽  
Vol 183-185 ◽  
pp. 1057-1060
Author(s):  
Li Kun Huang ◽  
Guang Zhi Wang ◽  
Jin Long Zuo

In order to investigate the characteristic of volatile organic compounds (VOCs) from wastewater treatment plant (WWTP), the air and water samples were collected. The air samples were extracted and identified by GC/MS. The atmospheric VOCs species from all WWTP units were tested. It was shown that the main fugitive sources were primary clarifier and the room of sludge dewatering. The numbers were 33 and 30. The total species of VOCs emitted varied with a range of 16 to 33. The relationship between VOCs species and the change of water quality were discussed. The increasing of VOCs species was related with the higher SUVA, and the molecular weight of VOCs species in air sample gradually become lower along the wastewater treatment process. In the wastewater treatment process,the function of microbe did not contribute the whole effort on the removing of organic pollutants. VOCs volatilized from water phase could also reduce organic pollutants in water phase. In the whole WWTP, the main VOCs species were alkyl with small molecular weight, aromatic hydrocarbon material and naphthalene. Halogenated hydrocarbon was detected in primary treatment unit and anoxic tank.


Sign in / Sign up

Export Citation Format

Share Document