Flame Retardancy and Thermal Decomposition of Phosphorus-Containing Waterborne Polyurethanes Modified by Halogen-Free Flame Retardants

2015 ◽  
Vol 54 (9) ◽  
pp. 2431-2438 ◽  
Author(s):  
Limin Gu ◽  
Yunjun luo
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 429 ◽  
Author(s):  
Le Wan ◽  
Cong Deng ◽  
Ze-Yong Zhao ◽  
Hong Chen ◽  
Yu-Zhong Wang

Natural rubber (NR) as a kind of commercial polymer or engineering elastomer is widely used in tires, dampers, suspension elements, etc., because of its unique overall performance. For some NR products, their work environment is extremely harsh, facing a serious fire safety challenge. Accordingly, it is important and necessary to endow NR with flame retardancy via different strategies. Until now, different methods have been used to improve the flame retardancy of NR, mainly including intrinsic flame retardation through the incorporation of some flame-retarding units into polymer chains and additive-type flame retardation via adding some halogen or halogen-free flame retardants into NR matrix. For them, the synergistic flame-retarding action is usually applied to simultaneously enhance flame retardancy and mechanical properties, in which some synergistic flame retardants such as organo-montmorillonite (OMMT), carbon materials, halloysite nanotube (HNT), etc., are utilized to achieve the above-mentioned aim. The used flame-retarding units in polymer chains for intrinsic flame retardation mainly include phosphorus-containing small molecules, an unsaturated chemical bonds-containing structure, a cross-linking structure, etc.; flame retardants in additive-type flame retardation contain organic and inorganic flame retardants, such as magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, and so on. Concerning the flame retardation of NR, great progress has been made in the past work. To achieve the comprehensive understanding for the strategy and recent progress in the flame retardation of NR, we thoroughly analyze and discuss the past and current flame-retardant strategies and the obtained progress in the flame-retarding NR field in this review, and a brief prospect for the flame retardation of NR is also presented.


RSC Advances ◽  
2021 ◽  
Vol 11 (49) ◽  
pp. 30943-30954
Author(s):  
Wei Peng ◽  
Yu-xuan Xu ◽  
Shi-bin Nie ◽  
Wei Yang

Phosphorus-containing flame retardants have received huge interest for improving the flame retardant behavior of epoxy resins (EP) over the past few decades.


RSC Advances ◽  
2020 ◽  
Vol 10 (20) ◽  
pp. 12078-12088
Author(s):  
Hui Wang ◽  
Xiaosheng Du ◽  
Shuang Wang ◽  
Zongliang Du ◽  
Haibo Wang ◽  
...  

A novel reactive intumescent fire retardant hexa-[4-[(2-hydroxy-ethylimino)-methyl]-phenoxyl]-cyclotriphosphazene (HEPCP), containing both cyclotriphosphazene and Schiff base structures, is successfully prepared.


RSC Advances ◽  
2017 ◽  
Vol 7 (62) ◽  
pp. 39270-39278 ◽  
Author(s):  
Dong Yu Zhu ◽  
Jian Wei Guo ◽  
Jia Xing Xian ◽  
Shu Qin Fu

Two efficient sulfonate flame retardants based on adamantane endow PC composites with excellent flame retardancy and mechanical property.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6375
Author(s):  
David De Smet ◽  
Madeleine Wéry ◽  
Miriam Bader ◽  
Ines Stachel ◽  
Michael Meyer ◽  
...  

Flame retardancy is often required in various textile applications. Halogenated flame retardants (FR) are commonly used since they have good FR performance. Several of these components are listed under REACH. Halogen-free FR compounds have been developed as alternatives. So far, not many biobased FR have made it to the market and are being applied in the textile sector, leaving great opportunities since biobased products are experiencing a renaissance. In this study, renewable FR based on sorbitol and isosorbide were synthesised. The reaction was performed in the melt. The resulting biobased FR were characterised via FT-IR, thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Cotton fabrics functionalized with the developed biobased FR passed ISO 15025 FR test. After washing, the FR properties of the fabrics decreased (longer afterflame and afterglow time) but still complied with ISO 15025, indicating the biobased FR were semi-permanent. The amount of residue of modified sorbitol and isosorbide measured at 600°C in air was 31% and 27%, respectively. Cotton treated with biobased modified FR showed no ignition during cone calorimetry experiments, indicating a flame retardancy. Furthermore, a charring of the FR containing samples was observed by means of cone calorimetry and TGA measurements.


Sign in / Sign up

Export Citation Format

Share Document