Adapting Process Unit Relations in Experimental Data Weighting Procedures: A Phase Equilibrium Case Study

2010 ◽  
Vol 49 (4) ◽  
pp. 1975-1981
Author(s):  
Geoffrey K. Ngigi ◽  
Diane Hildebrandt ◽  
David Glasser
1981 ◽  
Vol 20 (04) ◽  
pp. 207-212 ◽  
Author(s):  
J. Hermans ◽  
B. van Zomeren ◽  
J. W. Raatgever ◽  
P. J. Sterk ◽  
J. D. F. Habbema

By means of a case study the choice between several methods of discriminant analysis is presented. Experimental data of a two-groups problem with one or two variables is analysed. The different methods are compared according to posterior probabilities which can be computed for each subject and which are the basis of discriminant analysis. These posterior probabilities are analysed graphically as well as numerically.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Kese Pontes Freitas Alberton ◽  
André Luís Alberton ◽  
Jimena Andrea Di Maggio ◽  
Vanina Gisela Estrada ◽  
María Soledad Díaz ◽  
...  

This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of theEscherichia coliK-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.


2002 ◽  
Vol 124 (4) ◽  
pp. 762-770 ◽  
Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


2018 ◽  
Vol 63 (11) ◽  
pp. 1036 ◽  
Author(s):  
L. A. Bulavin ◽  
O. M. Alekseev ◽  
Yu. F. Zabashta ◽  
M. M. Lazarenko

The phase equilibrium condition is shown to be strictly satisfied only in the thermodynamic limit. The notion of melting temperature in the thermodynamic limit is introduced. Formulas are obtained that determine the melting conditions and the melting temperature for finite systems including nanocrystals. The validity of those formulas is confirmed, by comparing them with experimental data for organic materials in porous solids.


2011 ◽  
Vol 10 (02) ◽  
pp. 219-240 ◽  
Author(s):  
KONSTANTINOS DRAKAKIS ◽  
ROD GOW ◽  
SCOTT RICKARD
Keyword(s):  

Is it possible for a particular Costas array to be generated by two different constructions of the Golomb and Welch families? Experimental data suggests that this does not happen (except for trivially small orders), and a (partial) proof of this fact is offered herein through a case-by-case study of all possible pairs of constructions that can potentially produce Costas arrays of equal order.


Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical and supercritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR- and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


Sign in / Sign up

Export Citation Format

Share Document