scholarly journals Homogenisation Efficiency Assessed with Microstructure Analysis and Hardness Measurements in the EN AW 2011 Aluminium Alloy

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.

2016 ◽  
Vol 852 ◽  
pp. 205-210 ◽  
Author(s):  
Yu Han ◽  
Bao An Chen ◽  
Zhi Xiang Zhu ◽  
Dong Yu Liu ◽  
Yan Qiu Xia

It has particular heat-resistant property and conductivity of high-conductivity heat-resistant Aluminium alloys, which would be wildly applied in transmission and transformation flied. Al-Er-Zr alloys containing different content of Zr were prepared. The effect of Zr on microstructure of heat-resistance Aluminum alloy were studied by using of STEM, and thermodynamic behavior of Zr in Aluminium alloy was analyzed based on the theory of alloy phase formation. The results showed that the effect of Zr content on the grain size of heat-resistant aluminum alloy was remarkable, and the conductivity of heat-resistance Aluminum alloy was influenced.


2018 ◽  
Vol 60 (2) ◽  
pp. 390
Author(s):  
М.А. Шебзухова ◽  
А.А. Шебзухов

AbstractA consistent description of phase equilibrium and surface phenomena in binary systems containing monodisperse spherical nanoparticles of arbitrary (including nanoscale) size is presented in the context of the classical method with separating surfaces. Using the obtained relations, we have calculated the composition of coexisting phases and interface layer, and interfacial tension on the boundary between nanoparticles and the matrix at different temperatures in Ti-Mo system. The results of the calculations are consistent with the available experimental data.


1985 ◽  
Vol 25 (06) ◽  
pp. 865-874 ◽  
Author(s):  
T.G. Monger

Abstract This paper investigates the role of oil aromaticity in miscability development and in the deposition of heavy hydrocarbons during CO2, flooding. The results of phase equilibrium measurements, compositional studies, sandpack displacements, and consolidated corefloods are presented. Reservoir oil from the Brookhaven field and presented. Reservoir oil from the Brookhaven field and synthetic oils that model natural oil phase behavior are examined. Phase compositional analyses Of CO2/synthetic-oil mixtures in static PVT tests demonstrate that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. The results of tertiary corefloods performed with the synthetic oils show that CO2-flood oil displacement efficiency is also improved for the oil with higher aromatic content. These oil aromaticity influences are favorable. Reservoir oil experiments show that a significant deposition of aromatic hydrocarbon material occurs when CO2, contacts highly asphaltic crude. Solid-phase formation was observed in phase equilibrium and displacement studies and led to severe plugging during linear flow through Berea cores. It is unclear how this solid phase will affect oil recovery on a reservoir scale. Introduction Several reports suggest that oil aromaticity affects the CO2, displacement process of reservoir oil. Henry and Metcalfe noted the absence of multiple-liquid phase generation in displacement tests performed with a crude oil of low aromatic content. Holm and Josendal showed that when a highly paraffinic oil was enriched with aromatics, the slim-tube minimum miscibility pressure (MMP) decreased and oil recovery improved. Qualitative differences in the phase behavior of two crudes with contrasting aromatic contents prompted the suggestion by Monger and Khakoo that increased oil aromaticity correlates with improved hydrocarbon extraction into a CO2-rich phase. Clementz discussed how the adsorption of petroleum heavy ends, like the condensed aromatic ring structures found in asphaltenes, can alter rock properties. Laboratory studies have shown that improved oil properties. Laboratory studies have shown that improved oil recoveries in tertiary CO2 displacements benefited from changes in wetting behavior apparently, induced by asphaltene adsorption. Tuttle noted that CO2, appears to reduce asphaltene solubility and can cause rigid film formation. In these respects, oil aromaticity may also account for phase-behavior/oil-recovery synergism. Asphaltene deposition, though not a problem during primary and secondary recovery operations, was primary and secondary recovery operations, was reported in the Little Creek CO2 -injection pilot in Mississippi. Wettability alteration from asphaltene precipitation appears to have explained the results of low residual oil at high water-alternating-gas ratios in the Little Knife CO2, flood minitest in North Dakota. This paper provides detailed laboratory data from phase equilibrium measurements, compositional studies. sandpack displacements, and consolidated corefloods that illuminate the role of aromatics in miscibility development and in solid-phase formation during CO2 - flooding. The results for synthetic oils that model crude-oil behavior suggest that CO2-flood performance will benefit from increased oil aromaticity. The interpretation of reservoir oil results is more difficult. The precipitation of highly aromatic hydrocarbon material is observed when CO2, contacts Brookhaven crude. One purpose of this paper is to examine the variables that influence asphaltene precipitation. Near the wellbore, solid-phase formation might precipitation. Near the wellbore, solid-phase formation might reduce injectivity or impair production rates. Perhaps in other regions of the reservoir, altered permeability and/or wettability caused by solid-phase deposition might improve the ability of CO2, to contact oil. Additional work is needed to determine which potential benefits of oil aromaticity are significant on the reservoir scale. Advances in computer-implemented equations of state are making the prediction of CO2,/hydrocarbon phase behavior easier and more reliable. When an equation of state with CO2/reservoir-oil mixtures is used, an important consideration is the characterization of the heavy hydrocarbon components. One characterization method that appears to match the experimental data accurately in the critical point region for rich-gas/reservoir-oil mixtures is based on assigning separate paraffinic, aromatic, and naphthenic cuts. An additional aim of this study is to provide experimental data in assisting similar modeling provide experimental data in assisting similar modeling efforts for CO2/reservoir-oil mixtures. Experimental phase equilibrium data for mixtures containing CO2, and phase equilibrium data for mixtures containing CO2, and heavy hydrocarbons, particularly aromatics, are scarce. The behavior of multicomponent CO2,/hydrocarbon systems is not readily deduced from the phase equilibria of binary or ternary systems. Materials and Methods Phase Equilibrium Studies. A schematic diagram of the Phase Equilibrium Studies. A schematic diagram of the apparatus used in the phase-behavior experiments appears in Fig. 1. A detailed description of the equipment, procedures, chemicals, and analytical methods used is given procedures, chemicals, and analytical methods used is given in Ref. 10. SPEJ P. 865


2011 ◽  
Vol 291-294 ◽  
pp. 1015-1020 ◽  
Author(s):  
Chong Jin ◽  
Hong Wang ◽  
Xiao Zhou Xia

Based on the superiority avoiding the matrix equation to be morbid for those fitting functions constructed by orthogonal base, the Legendre orthogonal polynomial is adopted to fit the experimental data of concrete uniaxial compression stress-strain curves under the frame of least-square. With the help of FORTRAN programming, 3 series of experimental data is fitted. And the fitting effect is very satisfactory when the item number of orthogonal base is not less than 5. What’s more, compared with those piecewise fitting functions, the Legendre orthogonal polynomial fitting function obtained can be introduced into the nonlinear harden-soften character of concrete constitute law more convenient because of its uniform function form and continuous derived feature. And the fitting idea by orthogonal base function will provide a widely road for studying the constitute law of concrete material.


2002 ◽  
Vol 124 (4) ◽  
pp. 762-770 ◽  
Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1821
Author(s):  
Ting He ◽  
Wei Shi ◽  
Song Xiang ◽  
Chaowen Huang ◽  
Ronald G. Ballinger

The influence of AlFeSi and Mg2Si phases on corrosion behaviour of the cast 6061 aluminium alloy was investigated. Scanning Kelvin probe force microscopy (SKPFM), electron probe microanalysis (EPMA), and in situ observations by confocal laser scanning microscopy (CLSM) were used. It was found that Mg2Si phases were anodic relative to the matrix and dissolved preferentially without significantly affecting corrosion propagation. The AlFeSi phases’ influence on 6061 aluminium alloy local corrosion was greater than that of the Mg2Si phases. The corroded region width reached five times that of the AlFeSi phase, and the accelerating effect was terminated as the AlFeSi dissolved.


Sign in / Sign up

Export Citation Format

Share Document