New phase of an oxygen-nitrogen alloy at high pressure and room temperature detected by Raman spectroscopy

1989 ◽  
Vol 93 (5) ◽  
pp. 1683-1687 ◽  
Author(s):  
Bruce J. Baer ◽  
Malcolm Nicol
RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84216-84222 ◽  
Author(s):  
Chen Chen ◽  
Xiaoli Huang ◽  
Dongxiao Lu ◽  
Yanping Huang ◽  
Bo Han ◽  
...  

High-pressure Raman scattering studies on pure acetonitrile and an acetonitrile–water mixture at a molar ratio of (nCH3CN : nH2O) 1 : 7.25 were performed in a diamond anvil cell at room temperature.


2019 ◽  
Vol 21 (21) ◽  
pp. 11290-11297 ◽  
Author(s):  
Yoshihiro Koyama ◽  
Kiyoto Matsuishi ◽  
Takahiro Takekiyo ◽  
Hiroshi Abe ◽  
Yukihiro Yoshimura

We conducted high-pressure Raman spectroscopy measurements on a series of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide homologues at room temperature.


2020 ◽  
Vol 75 (11) ◽  
pp. 975-981
Author(s):  
Daniela Vitzthum ◽  
Ingo Widmann ◽  
Markus Plank ◽  
Bastian Joachim-Mrosko ◽  
Hubert Huppertz

AbstractOrthorhombic HP-Al2B3O7(OH) was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 12.4 GPa and 1200 °C, respectively. Its structure is isotypic to that of Ga2B3O7(OH) and has been determined via single-crystal X-ray diffraction at room temperature. HP-Al2B3O7(OH) crystallizes in the space group Cmce (Z = 8) with the lattice parameters a = 10.3124(4), b = 7.3313(3), c = 10.4801(5) Å, and V = 792.33(6) Å3. The compound has also been characterized by IR and Raman spectroscopy.


Author(s):  
Robert W. Roberson

The use of cryo-techniques for the preparation of biological specimens in electron microscopy has led to superior preservation of ultrastructural detail. Although these techniques have obvious advantages, a critical limitation is that only 10-40 μm thick cells and tissue layers can be frozen without the formation of distorting ice crystals. However, thicker samples (600 μm) may be frozen well by rapid freezing under high-pressure (2,100 bar). To date, most work using cryo-techniques on fungi have been confined to examining small, thin-walled structures. High-pressure freezing and freeze substitution are used here to analysis pre-germination stages of specialized, sexual spores (teliospores) of the plant pathogenic fungus Gymnosporangium clavipes C & P.Dormant teliospores were incubated in drops of water at room temperature (25°C) to break dormancy and stimulate germination. Spores were collected at approximately 30 min intervals after hydration so that early cytological changes associated with spore germination could be monitored. Prior to high-pressure freezing, the samples were incubated for 5-10 min in a 20% dextran solution for added cryoprotection during freezing. Forty to 50 spores were placed in specimen cups and holders and immediately frozen at high pressure using the Balzers HPM 010 apparatus.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Alloy Digest ◽  
1988 ◽  
Vol 37 (12) ◽  

Abstract RMI 6A1-4V ELI is an alpha-beta type of titanium-base alloy that can be strengthened by age hardening. In the mill-annealed condition it has a guaranteed minimum room-temperature yield strength of 120,000 psi and can be increased to as much as 160,000 psi by solution treating and aging. This alloy may be used for high-pressure cryogenic vessels down to 320 F. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-89. Producer or source: RMI Company.


1999 ◽  
Vol 69 (3) ◽  
pp. 309-312 ◽  
Author(s):  
C. Thomsen ◽  
S. Reich ◽  
H. Jantoljak ◽  
I. Loa ◽  
K. Syassen ◽  
...  

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


Sign in / Sign up

Export Citation Format

Share Document