The Effect of Surface Tension and Electrical Potential on the Stability of Mercury Emulsions

1936 ◽  
Vol 58 (5) ◽  
pp. 782-786
Author(s):  
V. Sivertz ◽  
W. H. Naylor ◽  
H. V. Tartar
2021 ◽  
Vol 927 ◽  
Author(s):  
John C. Grenfell-Shaw ◽  
Edward M. Hinton ◽  
Andrew W. Woods

We analyse the stability of the interface between two immiscible fluids both flowing in the horizontal direction in a thin cell with vertically varying gap width. The dispersion relation for the growth rate of each mode is derived. The stability is approximately determined by the sign of a simple expression, which incorporates the density difference between the fluids and the effect of surface tension in the along- and cross-cell directions. The latter arises from the varying channel width: if the non-wetting fluid is in the thinner part of the channel, the interface is unstable as it will preferentially migrate into the thicker part. The density difference may suppress or complement this effect. The system is always stable to sufficiently large wavenumbers owing to the along-flow component of surface tension.


2012 ◽  
Vol 433-440 ◽  
pp. 94-99 ◽  
Author(s):  
Yue Ling Gu ◽  
Qian Qian Yin ◽  
Shu Rong Wang ◽  
Xin Bao Li ◽  
Zuo Gang Guo ◽  
...  

Experimental study on the physico-chemical properties of bio-oil and diesel emulsification has been carried out in this paper, which was based on the preliminary experiment. The effect of surface tension and viscosity on the stability of emulsions were particular concerned. It was found that the longest stable time, the lowest viscosity and lowest surface tension can be obtained simultaneously when the hydrophile and lipophile balance (HLB) value was of the optimal value, i.e. 6.5. Experimental results indicated that the stable time of emulsion decreased rapidly with the increase of bio-oil content, while the value of surface tension and viscosity increased. Meantime, it was shown that the most stable emulsions had the lowest value of viscosity and surface tension.


1995 ◽  
Vol 303 ◽  
pp. 1-21 ◽  
Author(s):  
J. Tanny ◽  
C. C. Chen ◽  
C. F. Chen

The effect of surface tension on the onset of convection in horizontal double-diffusive layer was studied both experimentally and by linear stability analysis. The experiments were conducted in a rectangular tank with base dimension of 25×13 cm and 5 cm in height. A stable solute (NaCl) stratification was first established in the tank, and then a vertical temperature gradient was imposed. Vertical temperature and concentration profiles were measured using a thermocouple and a conductivity probe and the flow patterns were visualized by a schlieren system. Two types of experiments were carried out which illustrate the effect of surface tension on the onset of convection. In the rigid–rigid experiments, when the critical thermal Rayleigh number, RT, is reached, large double-diffusive plumes were seen simultaneously to rise from the heated bottom and descend from the cooled top. In the rigid–free experiments, owing to surface tension effects, the first instability onset was of the Marangoni type. Well-organized small plumes were seen to emerge and persist close to the top free surface at a relatively small RTM (where subscript M denotes ‘Marangoni’). At larger RTt > RTM (where subscript t denotes ‘top’) these plumes evolved into larger double-diffusive plumes. The onset of double-diffusive instability at the bottom region occurred at a still higher RTb > RTt (where subscript b denotes ‘bottom‘). A series of stability experiments was conducted for a layer with an initial top concentration of 2 wt% and different concentration gradients. The stability map shows that in the rigid–free case the early Marangoni instability in the top region reduces significantly the critical RT for the onset of double-diffusive convection. Compared with the rigid–rigid case, the critical RT in the top region is reduced by about 60% and in the bottom region by about 30%. The results of the linear stability analysis, which takes into account both surface tension and double-diffusive effects, are in general agreement with the experiments. The analysis is then applied to study the stability characteristics of such a layer as gravity is reduced to microgravity level. Results show that even at 10 −4g0, where g0 is the gravity at sea level, the double-diffusive effect is of equal importance to the Marangoni effect.


1981 ◽  
Vol 102 ◽  
pp. 455-469 ◽  
Author(s):  
J. W. McLean ◽  
P. G. Saffman

The experimental results of Saffman & Taylor (1958) and Pitts (1980) on fingering in a Hele Shaw cell are modelled by two-dimensional potential flow with surface-tension effects included at the interface. Using free streamline techniques, the shape of the free surface is expressed as the solution of a nonlinear integro-differential equation. The equation is solved numerically and the solutions are compared with experimental results. The shapes of the profiles are very well predicted, but the dependence of finger width on surface tension is not quantitatively accurate, although the qualitative behaviour is correct. A conflict between the numerics and a formal singular perturbation analysis is noted but not resolved. The stability of the steady finger to small disturbances is also examined. Linearized stability analysis indicates that the two-dimensional fingers are not stabilized by the surface-tension effect, which disagrees with the experimental observations. A possible reason for the discrepancy between theory and experiment is suggested.


Author(s):  
W. H. Reid

ABSTRACTThe effect of surface tension on the stability of two superposed fluids can be described in a universal way by a non-dimensional ‘surface tension number’ S which provides a measure of the relative importance of surface tension and viscosity. When both fluids extend to infinity, the problem can be reduced to the finding of the roots of a quartic equation. The character of these roots is first analysed so as to obtain all possible modes of stability or instability. Two illustrative cases are then considered in further detail: an unstable case for which the density of the lower fluid is zero and a stable case for which the density of the upper fluid is zero, the latter case corresponding to gravity waves. Finally, the variational principle derived by Chandrasekhar for problems of this type is critically discussed and it is shown to be of less usefulness than had been thought, especially in those cases where periodic modes exist.


2019 ◽  
Vol 29 (7) ◽  
pp. 629-654
Author(s):  
Zehao Feng ◽  
Shangqing Tong ◽  
Chenglong Tang ◽  
Cheng Zhan ◽  
Keiya Nishida ◽  
...  

2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document