The effects of surface tension and viscosity on the stability of two superposed fluids

Author(s):  
W. H. Reid

ABSTRACTThe effect of surface tension on the stability of two superposed fluids can be described in a universal way by a non-dimensional ‘surface tension number’ S which provides a measure of the relative importance of surface tension and viscosity. When both fluids extend to infinity, the problem can be reduced to the finding of the roots of a quartic equation. The character of these roots is first analysed so as to obtain all possible modes of stability or instability. Two illustrative cases are then considered in further detail: an unstable case for which the density of the lower fluid is zero and a stable case for which the density of the upper fluid is zero, the latter case corresponding to gravity waves. Finally, the variational principle derived by Chandrasekhar for problems of this type is critically discussed and it is shown to be of less usefulness than had been thought, especially in those cases where periodic modes exist.

1968 ◽  
Vol 21 (6) ◽  
pp. 923 ◽  
Author(s):  
RC Sharma ◽  
KM Srivastava

A general equation studying the combined effect of horizontal and vertical magnetic fields on the stability of two superposed fluids has been obtained. The unstable and stable cases at the interface (z = 0) between two uniform fluids, with both the possibilities of real and complex n, have been. separately dealt with. Some new results are obtained. In the unstable case with real n, the perturbations are damped or unstable according as 2(k'-k~L2)_(<X2-<Xl)k is> or < 0 under the physical situation (35). In the stable case, the perturbations are stable or unstable according as 2(k2_k~L2)+(<Xl-<X2)k is > or < 0 under the same physical situation (35). The perturbations become unstable if HIlIH 1- (= L) is large. Both the cases are also discussed with imaginary n.


Author(s):  
Raymond Hide

ABSTRACTThe equilibrium of a layer of a viscous incompressible fluid of density ρ variable in the vertical (z) direction, the fluid extending indefinitely in the horizontal directions and being confined between rigid horizontal boundaries, is examined by the usual method of studying the initial behaviour of a small disturbance. Diffusion effects are ignored. Chandra-sekhar has shown quite generally that a variational procedure for solving the resulting characteristic value problem is admissible, suggesting a method whereby an approximate solution can be obtained analytically. In this paper, by making use of appropriate approximate methods of solution, three types of density configuration, ρ(z), are studied. The first corresponds to two superposed fluids of great depth, the upper and lower fluids haying densities and coefficients of viscosity ρ2 and μ2, and ρ1 and μ1, respectively. Chandrasekhar has given an exact numerical solution to this problem for the case where μ2/ρ2 = μ1/ρ1 The results of the approximate theory, by which not all the boundary conditions can be satisfied, and the exact theory are in good agreement. Expressions for the wave-length and growth rate of the mode of maximum instability in the unstable case (ρ2 > ρ1) are found. The stable case (ρ2 > ρ1) is also discussed in detail; the formulae obtained for the phase and group velocities of gravity waves in deep viscous fluids are especially interesting. There is an upper limit to the natural frequency of oscillation of the system which would be well within the range of experimental investigation.The second problem considered is that of two superposed fluids of small depth. Formulae for the phase and group velocities of ‘long gravity waves’ (which are not equal when viscous effects are included) are obtained.Finally, a continuously stratified fluid of finite depth d in which ρ(z) = ρ0eβz is investigated. The character of the equilibrium depends on a Grashof number G = (gβd4)/(π4ν2) where g is the acceleration of gravity and ν is the coefficient of kinematical viscosity, assumed for simplicity to be constant. Expressions for the wave-length and growth rate of the mode of maximum instability in the unstable case (G > 0) are obtained. In the stable case (G < 0) all modes are aperiodically damped if – G < . Otherwise, the possibility of a disturbance being propagated as a horizontal wave does arise, but only within a limited wave-length range.


2006 ◽  
Vol 18 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Xiao-Bo CHEN ◽  
Wen-Yang DUAN ◽  
Dong-Qiang LU

Author(s):  
B. A. Packham

In considering the problem of waves on a sloping beach, little regard seems to have been given to the effect of surface tension. Wehausen and Laitone (7) tend to attribute this to the fact that the additional force is small. This does not, of course, preclude the possibility that the effect may be appreciable in certain regions, and Longuet-Higgins (3), for example, has shown this to be the case near the crests for waves on the point of breaking. They also add, which is probably rather more pertinent, that difficulties arise when a solid boundary pierces the surface, since an additional boundary condition is required at the intersection, but give no indication as to what the boundary condition should be.


2021 ◽  
Vol 927 ◽  
Author(s):  
John C. Grenfell-Shaw ◽  
Edward M. Hinton ◽  
Andrew W. Woods

We analyse the stability of the interface between two immiscible fluids both flowing in the horizontal direction in a thin cell with vertically varying gap width. The dispersion relation for the growth rate of each mode is derived. The stability is approximately determined by the sign of a simple expression, which incorporates the density difference between the fluids and the effect of surface tension in the along- and cross-cell directions. The latter arises from the varying channel width: if the non-wetting fluid is in the thinner part of the channel, the interface is unstable as it will preferentially migrate into the thicker part. The density difference may suppress or complement this effect. The system is always stable to sufficiently large wavenumbers owing to the along-flow component of surface tension.


2012 ◽  
Vol 433-440 ◽  
pp. 94-99 ◽  
Author(s):  
Yue Ling Gu ◽  
Qian Qian Yin ◽  
Shu Rong Wang ◽  
Xin Bao Li ◽  
Zuo Gang Guo ◽  
...  

Experimental study on the physico-chemical properties of bio-oil and diesel emulsification has been carried out in this paper, which was based on the preliminary experiment. The effect of surface tension and viscosity on the stability of emulsions were particular concerned. It was found that the longest stable time, the lowest viscosity and lowest surface tension can be obtained simultaneously when the hydrophile and lipophile balance (HLB) value was of the optimal value, i.e. 6.5. Experimental results indicated that the stable time of emulsion decreased rapidly with the increase of bio-oil content, while the value of surface tension and viscosity increased. Meantime, it was shown that the most stable emulsions had the lowest value of viscosity and surface tension.


1986 ◽  
Vol 9 (1) ◽  
pp. 145-159
Author(s):  
M. A. Gorgui ◽  
M. S. Faltas

The study of linearized interface wave problems for two superposed fluids often involves the consideration of different types of singularities in one of the two fluids. In this paper the line and point singularities are investigated for the case when each fluid is of finite constant depth. The effect of surface tension at the surface of separation is included.


2006 ◽  
Vol 18 (S1) ◽  
pp. 170-175
Author(s):  
Xiao-Bo Chen ◽  
Wen-Yang Duan ◽  
Dong-Qiang Lu

Author(s):  
Q. H. Song ◽  
X. Ai ◽  
Z. Q. Liu

Based on the stability lobe diagram of two degrees of freedom milling system obtained by using the numerical method, two kinds of cutting conditions (stable and unstable) are selected to perform the cutting tests of aeronautical monolithic components. Cutting distortion and secular distortion are measured and analyzed by using the MISTRAL 775 coordinate measuring machine (CMM), respectively. Influences of chatter on machining distortion are investigated. It is shown that, both machining distortion and secular distortion are smaller in stable case; in unstable case, machining distortion is also smaller, while secular distortion is very large, and torsion occurs in the workpiece end with larger box. Therefore, workpiece need be machined in stable conditions for subsequent assembly work, especially aeronautical monolithic components.


Sign in / Sign up

Export Citation Format

Share Document