scholarly journals Metal–Ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering

2013 ◽  
Vol 135 (45) ◽  
pp. 17121-17134 ◽  
Author(s):  
Marcus Lundberg ◽  
Thomas Kroll ◽  
Serena DeBeer ◽  
Uwe Bergmann ◽  
Samuel A. Wilson ◽  
...  
Author(s):  
Kristjan Kunnus ◽  
Meiyuan Guo ◽  
Elisa Biasin ◽  
Christopher B. Larsen ◽  
Charles J. Titus ◽  
...  

2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Peter Nadazdy ◽  
Jakub Hagara ◽  
Petr Mikulik ◽  
Zdenko Zaprazny ◽  
Dusan Korytar ◽  
...  

A four-bounce monochromator assembly composed of Ge(111) and Ge(220) monolithic channel-cut monochromators with V-shaped channels in a quasi-dispersive configuration is presented. The assembly provides an optimal design in terms of the highest transmittance and photon flux density per detector pixel while maintaining high beam collimation. A monochromator assembly optimized for the highest recorded intensity per detector pixel of a linear detector placed 2.5 m behind the assembly was realized and tested by high-resolution X-ray diffraction and small-angle X-ray scattering measurements using a microfocus X-ray source. Conventional symmetric and asymmetric Ge(220) Bartels monochromators were similarly tested and the results were compared. The new assembly provides a transmittance that is an order of magnitude higher and 2.5 times higher than those provided by the symmetric and asymmetric Bartels monochromators, respectively, while the output beam divergence is twice that of the asymmetric Bartels monochromator. These results demonstrate the advantage of the proposed monochromator assembly in cases where the resolution can be partially sacrificed in favour of higher transmittance while still maintaining high beam collimation. Weakly scattering samples such as nanostructures are an example. A general advantage of the new monochromator is a significant reduction in the exposure time required to collect usable experimental data. A comparison of the theoretical and experimental results also reveals the current limitations of the technology of polishing hard-to-reach surfaces in X-ray crystal optics.


2008 ◽  
Vol 310 (5) ◽  
pp. 982-987 ◽  
Author(s):  
A. Boulle ◽  
D. Chaussende ◽  
F. Conchon ◽  
G. Ferro ◽  
O. Masson

2018 ◽  
Vol 20 (44) ◽  
pp. 27745-27751 ◽  
Author(s):  
Raphael M. Jay ◽  
Sebastian Eckert ◽  
Mattis Fondell ◽  
Piter S. Miedema ◽  
Jesper Norell ◽  
...  

The impact of ligand substitution on metal-ligand covalency and the valence excited state landscape is investigated using resonant inelastic soft X-ray scattering.


2021 ◽  
Author(s):  
Qiang Sun ◽  
Ya-Wei Liu ◽  
Yuan-Chen Xu ◽  
Li-Han Wang ◽  
Tian-Jun Li ◽  
...  

Abstract The oscillator strengths of the valence-shell excitations of C2H2 are extremely important for testing theoretical models and studying interstellar gases. In this study, the high-resolution inelastic x-ray scattering (IXS) method is adopted to determine the generalized oscillator strengths (GOSs) of the valence-shell excitations of C2H2 at a photon energy of 10 keV. The GOSs are extrapolated to their zero limit to obtain the corresponding optical oscillator strengths (OOSs). Through taking a completely different experimental method of the IXS, the present results offer the high energy limit for electron collision to satisfy the first Born approximation (FBA) and cross-check the previous experimental and theoretical results independently. The comparisons indicate that an electron collision energy of 1500 eV is not enough for C2H2 to satisfy the FBA for the large squared momentum transfer, and the line saturation effect limits the accuracy of the OOSs measured by the photoabsorption method.


1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


Sign in / Sign up

Export Citation Format

Share Document