Rapid Reaction, Slow Dissociation Aggregation, and Synergetic Multicolor Emission for Imaging the Restriction and Regulation of Biosynthesis of Cys and GSH

Author(s):  
Huming Yan ◽  
Fangjun Huo ◽  
Yongkang Yue ◽  
Jianbin Chao ◽  
Caixia Yin
1975 ◽  
Vol 34 (01) ◽  
pp. 115-126 ◽  
Author(s):  
Kiyoake Watanabe ◽  
Francis C Chao ◽  
James L Tullis

SummaryAntithrombin activity has been identified in intact washed human platelets. An apparent activity was demonstrated at platelet concentrations above 0.31 × 109/ml, when platelet suspensions were incubated with 2.0 NIH units/ml of thrombin. Neither red cells nor white cells revealed antithrombin activity. No significant loss of the platelet antithrombin activity was observed after ten successive washings or after treatment of platelets with antibodies to antithrombin III or α2-macroglobulin. Almost the same amount of antithrombin activity as normal platelets was demonstrated in the platelets from an afibrinogenemic patient. Pre-treatment of platelets with trypsin, papain, and neuroaminidase reduced the activity significantly, whereas lipase was without effect. The platelet antithrombin reacted with thrombin in less than 3 seconds, and this rapid reaction of platelet antithrombin was different from that of plasma antithrombin III or fibrinogen. The thrombin-like clotting activity of ancrod was inhibited by fibrinogen but not platelets. Also, unlike plasma antithrombin III or fibrinogen, brief exposure to heat (56° C or 60° C) reduced considerable amounts of platelet antithrombin activity. These results suggest that platelets possess a specific antithrombin with different characteristics from other known antithrombins.


1989 ◽  
Vol 264 (27) ◽  
pp. 16008-16016 ◽  
Author(s):  
J Powlowski ◽  
D Ballou ◽  
V Massey

1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


2015 ◽  
Vol 112 (30) ◽  
pp. 9166-9173 ◽  
Author(s):  
Xiao-yu Zheng ◽  
Mian Zhou ◽  
Heejin Yoo ◽  
Jose L. Pruneda-Paz ◽  
Natalie Weaver Spivey ◽  
...  

The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.


Sign in / Sign up

Export Citation Format

Share Document