Cobalt-Catalyzed Diastereo- and Enantioselective Reductive Allyl Additions to Aldehydes with Allylic Alcohol Derivatives via Allyl Radical Intermediates

Author(s):  
Lei Wang ◽  
Lifan Wang ◽  
Mingxia Li ◽  
Qinglei Chong ◽  
Fanke Meng
2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2019 ◽  
Author(s):  
Marharyta V. Laktsevich-Iskryk ◽  
Nastassia A. Varabyeva ◽  
Volha V. Kazlova ◽  
Vladimir N. Zhabinskii ◽  
Vladimir A. Khripach ◽  
...  

In this article, we report a photocatalytic protocol for the isomerization of 1,2-disubstituted cyclopropanols to linear ketones. The reaction proceeds <i>via</i> radical intermediates and tolerates various functional groups.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


2020 ◽  
Author(s):  
Hui Zhao ◽  
Kai Gao ◽  
Haichen Ma ◽  
Tsz Chun Yip ◽  
Wei-Min Dai

The C19–C30 bis-THF fragment of the proposed structure of iriomoteolide-13a has been synthesized. The w-mesyloxy-substituted stereotetrad possessing three continuous hydroxy groups was generated by <i>anti</i>-aldol reaction and asymmetric dihydroxylation (AD). Upon heating in pyridine the stereotetrad underwent an S<sub>N</sub>2 cyclization to form the C19–C22 THF ring. It was followed by an intramolecular <i>syn</i>-oxypalladation of the C28 chiral allylic alcohol to give the C23–C26 THF ring.


2018 ◽  
Author(s):  
Patrick Moon ◽  
Zhongyu Wie ◽  
Rylan Lundgren

The stability and wide availability of carboxylic acids make them valuable reagents in chemical synthesis. Most transition metal catalyzed processes using carboxylic acid substrates are initiated by a decarboxylation event that generates reactive carbanion or radical intermediates. Developing enantioselective methodologies relying on these principles can be challenging, as highly reactive species tend to react indiscriminately without selectivity. Furthermore, anionic or radical intermediates generated from decarboxylation can be incompatible with protic and electrophilic functionality, or groups that undergo trapping with radicals. We demonstrate that metal-catalyzed enantioselective benzylation reactions of allylic electrophiles can occur directly from aryl acetic acids. The reaction proceeds via a pathway in which decarboxylation is the terminal event, occurring after stereoselective carbon–carbon bond formation. The mechanistic features of the process enable enantioselective benzylation without the generation of a highly basic nucleophile. Thus, the process has broad functional group compatibility that would not be possible employing established protocols.<br>


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


1979 ◽  
Vol 44 (7) ◽  
pp. 2009-2014 ◽  
Author(s):  
Jana Nováková ◽  
Zdeněk Dolejšek

Products of (a) allyl radical interaction with unheated Co3O4, (b) thermally activated 1,5-hexadiene or thermally activated allyl bromide with unheated Co3O4, (c) moderately heated Co3O4 with unheated 1,5-hexadiene or allyl bromide were studied under Knudsen flow conditions. Cobalt suboxide Co3O4, a typical catalyst of deep oxidations yielded acrolein in reaction with allyl radicals as early as at the room temperature of the catalyst. A similar acrolein formation was also observed in the allyl radical interaction with other oxides exhibiting different catalytic properties. It appears that acrolein is in general the primary product of the allyl radical interaction with the oxides. The results are discussed and compared with previous data obtained with MoO3.


1997 ◽  
Vol 62 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Katarína Erentová ◽  
Vladimír Adamčík ◽  
Andrej Staško ◽  
Oskar Nuyken ◽  
Arming Lang ◽  
...  

The cathodically and photochemically induced decomposition of thioazo compounds XC6H4-N2-S-C6H4CH3 and their polymers with X = NO2, COOH, and SO3H were investigated. The formation of carbon-centered XC6H4. and sulfur-centered .S-C6H4Y radicals was confirmed using spin-trap technique. These reactive radicals either abstract hydrogen from CH3CN solvent molecule forming .CH2CN radical or they recombine to cage products XC6H4-S-C6H4CH3 eliminating N2. The decomposition rate of the investigated thioazo compounds is characterized by a formal half-life time of 5 to 10 s.


Sign in / Sign up

Export Citation Format

Share Document